ЗАКАЗАТЬ: НПСИ-230-ПМ10 преобразователь

Тип средств измерений зарегистрирован в Госреестре средств измерений под N° 72891-18 от 22.10.2018 г.

Преобразователь нормирующий НПСИ-230-ПМ10

Паспорт пимф.422189.015 пс Версия 0.0

Содержание

1 Обозначение при заказе	3
2 Назначение	
3 Технические характеристики	8
4 Комплектность	16
5 Устройство и работа преобразователя	17
6 Размещение и подключение преобразователя	29
7 Указание мер безопасности	33
8 Правила транспортирования и хранения	34
9 Гарантийные обязательства	35
10 Адрес предприятия-изготовителя:	35
11 Свидетельство о приёмке	37
12 Отметки в эксплуатации	47
Приложение А ПИМФ.422189.001 МП Преобразователи сигналов измери-	
тельные нормирующие НПСИ серии NNN. Методика поверки	38

Настоящий паспорт предназначен для ознакомления с устройством, принципом действия, конструкцией, эксплуатацией, техническим обслуживанием и поверкой преобразователей сигналов измерительных **НПСИ-230-ПМ10-0C-X-МX** (далее по тексту – преобразователи).

Преобразователи относятся к сертифицированному типу средств измерений «Преобразователи сигналов измерительные нормирующие НПСИ серии NNN».

Данная модификация преобразователей предназначена для работы с потенциометрами и потенциометрическими датчиками. Преобразователи выпускаются по техническим условиям ПИМФ.422189.001 ТУ.

ВНИМАНИЕ! Знак в тексте документа указывает на требования, не соблюдение которых может привести к выходу преобразователя из строя, либо к травмам персонала, использующего прибор.

1 Обозначение при заказе

Преобразователь нормирующий **НПСИ-230-ПМ10-0С-X-МX** МО - стандартная (серийная) модификация; **МХ** - модификация по запросу потребителя, X - код модификации, уточняется при заказе. Напряжение питания: 220 - Номинальное значение - напряжение переменного тока 220 В, рабочий диапазон от 85 до 265 В. 50 Гц (постоянное от 110 до 370 В) 24 - Номинальное значение - напряжение постоянного тока 24 В, рабочий диапазон от 12 до 36 В Наличие сигнализации: 0С - сигнализации нет Типы входных сигналов или параметров: ПМ 10-сигналы потенциометров или потенциометрических датчиков, максимально допустимое номинальное сопротивление потенциометра 10 кОм Серия преобразователей: 230 - преобразователи с гальванической изоляцией между входом и выходом, конфигурируемые при помощи кнопок на лицевой панели с контролем по LED дисплею.

Пример записи:

Преобразователь нормирующий НПСИ-230-ПМ10-0C-220-МХ – преобразователь с гальванической изоляцией между входом и выходом, конфигурируемый при помощи кнопок на лицевой панели с контролем по LED дисплею, тип входных сигналов – сигналы потенциометров или потенциометрических датчиков, максимально допустимое номинальное сопротивление потенциометра 10 кОм, сигнализация отсутствует, напряжение питания: номинальное значение – напряжение переменного тока 220 В, рабочий диапазон от 85 до 265 В, 50 Гц (постоянное от 110 до 370 В), стандартная (серийная) модификация.

2 Назначение

Преобразователи предназначены для преобразования сигналов потенциометров и потенциометрических датчиков (далее ПМ) в унифицированные сигналы постоянного тока. Зависимость выходного тока от положения движка потенциометра – линейная. Преобразователи работают с потенциометрами, имеющими линейную характеристику. Преобразователи для работы с потенциометрами, имеющими нелинейные характеристики (логарифмические и другие), могут быть выпущены по запросу потребителя.

Характеристика потенциометра, диапазон преобразования выбираются пользователем при конфигурировании.

Выполняемые функции:

- преобразование сигналов потенциометров и потенциометрических датчиков в унифицированный токовый сигнал, зависимость тока от положения движка потенциометра – линейная;
- выбор границ преобразования при помощи процедуры настройки;
- гальваническая изоляция между собой входов, выходов, питания преобразователя;

- обнаружение аварийных ситуаций: обрыв потенциометра (номинал больше допустимого более чем на 30 %), замыкание потенциометра (номинал меньше допустимого более чем на 30 %), выход параметра за пределы допустимого диапазона преобразования, целостность параметров в энергонезависимой памяти. Сигнализация аварийных ситуаций: индикация и формирование аварийного уровня выходного сигнала для обнаружения аварийных ситуаций внешними системами;
- индикация уровня выходного сигнала на дисплее и бар-графом;
- конфигурирование параметров преобразователя с помощью двух кнопок на передней панели с контролем по дисплею.

Пользователь может задать (сконфигурировать) с помощью кнопок и светодиодного дисплея на передней панели следующие характеристики преобразователя:

- характеристика потенциометра (таблица 1);
- диапазон входного сигнала (процедура выбора диапазона описана ниже);
- диапазон выходного сигнала постоянного тока (0...5, 0...20, 4...20) мА;
- уровень выходного сигнала при возникновении аварийной ситуации (высокий/низкий);
- индикацию уровня выходного сигнала бар-графом (есть/нет).

Преобразователи рассчитаны для монтажа на DIN-рейку по EN 50 022 внутри шкафов автоматики и в шкафах низковольтных комплектных устройств.

Применение преобразователей обеспечивает:

- высокую точность преобразования 0,1 %;
- высокую температурную стабильность преобразования 0,005 % / градус;
- расширенный диапазон рабочих температур от минус 40 до плюс 70 °C;
- защиту от электромагнитных помех при передаче сигналов на большие расстояния в условиях сильных промышленных воздействий;
- гальваническую изоляцию между собой входов, выходов, питания не требуется гальваническая изоляция датчика, питания преобразователя и потребителя токового сигнала;
- подключение одного датчика к нескольким потребителям токового сигнала;
- экономию места в монтажном шкафу компактный корпус, ширина 22,5 мм;
- простой монтаж разъемные винтовые клеммы.

Область применения: системы измерения, сбора данных, контроля и регулирования технологических параметров в технологических процессах в энергетике, металлургии, химической, нефтяной, газовой, машиностроительной, пищевой, перерабатывающей и других отраслях промышленности, а также научных исследованиях.

3 Технические характеристики

3.1 Метрологические характеристики

3.1.1 Основная погрешность

Пределы основной допускаемой приведенной погрешности преобразования сигналов потенциометра $\mathbf{R}/\mathbf{R}_{\text{max}}$ в унифицированный сигнал постоянного тока, не более $\pm 0,1~\%$ для диапазонов выходного тока (0...20, 4...20) мА и не более $\pm 0,25~\%$ для диапазона выходного тока (0...5) мА.

Диапазон допустимых номинальных сопротивлений подключаемых потенциометров \mathbf{R}_{max} – от 100 Ом до 10 кОм.

Пределы основной допускаемой приведенной погрешности преобразования для конкретных типов входных датчиков, условные номера типов входных характеристик потенциометра приведены в таблице 1. Приведенные погрешности нормированы к полному диапазону положений движка потенциометра.

Таблица 1 – Типы характеристик потенциометров

Тип характеристики потенциометра	Номер типа ха- рактеристики потенциометра	Пределы основной до- пускаемой приведенной погрешности (δ), %
Потенциометр с характеристикой А российской, В международной*	1*	± 0,1
Потенциометр с нелинейной характеристикой по заказу 1**	2	-
Потенциометр с нелинейной характеристикой по заказу 2**	3	-
Потенциометр с нелинейной характеристикой по заказу 3**	4	-

Примечание*: При выпуске преобразователь сконфигурирован на работу с данным типом входного сигнала.

Примечание **: Характеристики доступны только в заказных модификациях.

3.1.2 Дополнительная погрешность

Пределы дополнительной допускаемой погрешности, вызванной изменением температуры окружающего воздуха от нормальной (23 ±5) °С до любой температу-

ры в пределах рабочего диапазона не превышают 0,25 предела основной погрешности на каждые 10 °C изменения температуры.

Пределы дополнительной допускаемой погрешности, вызванной изменением сопротивления нагрузки токового выхода от его номинального значения до любого в пределах допустимого диапазона сопротивлений нагрузки (при номинальном напряжении питания), не превышают 0,5 предела основной погрешности.

Пределы дополнительной допускаемой погрешности, вызванной воздействием повышенной влажности 95 % при температуре 35 $^{\circ}$ C без конденсации влаги, не превышают 0,5 предела основной погрешности.

3.1.3 Интервал между поверками составляет 5 лет.

3.2 Характеристика преобразования

Преобразователь имеет линейно возрастающую характеристику выходного сигнала при работе с ПМ. Зависимость между выходным током и положением движка определяется формулой (1):

$$I_{\text{RMX}} = I_{\text{MMH}} + (I_{\text{MAKC}} - I_{\text{MMH}}) \times \Theta / 100 \tag{1}$$

где: $I_{\text{вых}}$ – измеренное значение выходного тока, мА;

Імин, **І**макс – нижняя и верхняя границы диапазона выходного тока, мА;

 Θ – относительное положение движка потенциометра в процентах от диапазона его возможных положений.

Таблица 2 – Возможные значения Імин и Імакс

Диапазон выходного токового сигнала	/ мин, МА	/ макс, МА
(420) MA	4	20
(020) мА	0	20
(05) MA	0	5

3.3 Эксплуатационные характеристики

3.3.1 Границы диапазона выходных сигналов преобразователя

Таблица 3 – Границы диапазона выходных сигналов

Диапазон нормиро-	Диапазон линейно-	Низкий уровень	Высокий уро-
ванного выходного	го изменения вы-	аварийного	вень аварийно-
токового сигнала	ходного тока	сигнала	го сигнала
(05) MA (05,1) MA		0 мА	5,5 мА
(020) мА	(020,5) мА	0 мА	21,5 мА
(420) мА	(3,820,5) мА	3,6 мА	21,5 мА

3.3.2 Схемы подключения и характеристики ПМ

Схема подключения ПМ
3.3.3 Гальваническая изоляция
Гальваническая изоляция входных, выходных цепей и цепей питания 1500 В, 50 Гц.
3.3.4 Питание преобразователя
Номинальное значение напряжения питания:
НПСИ-230-ПМ10-0C-220-MX~220 В, 50 Гц.
НПСИ-230-ПМ10-0С-24-МХ 24 В.
Диапазон допустимых напряжений питания:
НПСИ-230-ПМ10-0С-220-МХ от ~85 до 265 В.
НПСИ-230-ПМ10-0С-24-MX от == 12 до 36 В.
Потребляемая от источника питания мощность, не более2,5 В.А.

3.3.5 Сопротивление нагрузки

3.3.6 Характеристики помехозащищенности

Характеристики помехозащищенности приведены в таблице 4.

Таблица 4 – Характеристика помехозащищенности

Устойчивость к воздействию электростатического разряда по ГОСТ 30804.4.2	Степень
Устойчивость к воздействию наносекундных импульсных помех по ГОСТ 30804.4.4	жесткости испытаний 3
Устойчивость к воздействию микросекундных импульсных помех по ГОСТ Р 51317.4.5	Критерий А
Устойчивость к динамическому изменению параметров питания по ГОСТ 30804.4.11	

Подавление помех переменного тока частотой 50 Гц последовательного вида, приложенных к входу, не менее70 дБ. Подавление помех переменного тока частотой 50 Гц общего вида, приложенных к входу, не менее
3.3.7 Параметры по электробезопасности Соответствие требованиям электробезопасности по ГОСТ 12.2.007.0. НПСИ-230-ПМ10-0С-220-МХкласс II. НПСИ-230-ПМ10-0С-24-МХкласс III.
3.3.8 Установление режимов
Время установления рабочего режима (предварительный прогрев), не более5 мин. Время непрерывной работыкруглосуточно.
3.3.9 Условия эксплуатации
Группа по ГОСТ Р 52931
3.3.10 Массогабаритные характеристики
Масса преобразователя, не более

Габаритные размеры, не более	(115×105×22,5) мм.
3.3.11 Параметры надежности	
Средняя наработка на отказ, не менее	150 000 ч.
Средний срок службы, не менее	20 лет.

4 Комплектность

3 комплект поставки входят:	
Преобразователь	1 шт
Розетки к клеммному соединителю	3 шт
Паспорт	1 шт
Потребительская тара	1 шт

5 Устройство и работа преобразователя

5.1 Органы индикации и управления

Передняя панель преобразователей изображена на рисунке 2. Назначение органов индикации и управления приведено в таблице 5.

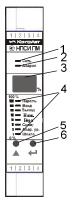


Рисунок 2 – Передняя панель преобразователя

Таблица 5 – Органы индикации и управления

	таблица в органы индикации и управления			
Nº	Наименование органа управ- ления или индикации	Режим РАБОТА	Режим КОНФИГУРИРОВАНИЕ	Режим АВАРИЯ
1	Индикатор «Сеть»	Индицирует включенное со- стояние преоб- разователя	Горит непрерывно, если разрешен только просмотр параметров, мигает – если просмотр и изменение	Индицирует включенное со- стояние преоб- разователя
2	Индикатор «Авария»	Не горит	Мигает при обнару- жении преобразова- телем аварийной си- туации.	Мигает при об- наружении пре- образователем аварийной си- туации
3	Светодиодный дисплей	Отображает уровень выходного сигнала (в процентах)	Отображает значение выбранного параметра	Мигает код ава- рийной ситуации

Nº	Наименование органа управ- ления или индикации	Режим РАБОТА	Режим КОНФИГУРИРОВАНИЕ	Режим АВАРИЯ
4	Группа из восьми инди- каторов ме- ню/барграф	Отображает уровень выход- ного сигнала, функция свето- диодной шкалы (бар-графа)	Указывает параметр, значение которого отображается на светодиодном дисплее	Отображает уровень аварийного сигнала: высокий – мигает вся шкала, низкий – шкала не светится
5	Кнопка «Δ»	Не функционирует	Установка значения параметров	Не функциониру- ет
6	Кнопка « ← »	Переход в режим КОНФИГУРИРО- ВАНИЕ	Выбор параметра, подлежащего про- смотру или изменению	Переход в режим КОНФИГУРИРО- ВАНИЕ

5.2 Режимы работы преобразователя

Преобразователь может функционировать в одном из 3 режимов:

- режим РАБОТА;
- режим АВАРИЯ;
- режим КОНФИГУРИРОВАНИЕ.

5.2.1 Режим РАБОТА

Режим **РАБОТА** – это основной режим работы преобразователя. Режим **РАБОТА** устанавливается сразу после включения питания (при отсутствии аварийных ситуаций).

В этом режиме на светодиодном дисплее и бар-графе отображается значение выходного сигнала в процентах в соответствии с таблицей 6.

Кнопкой « \checkmark » осуществляется переход в режим **КОНФИГУРИРОВАНИЕ**. Кнопка « Δ » в режиме **РАБОТА** не функционирует.

Таблица 6 – Значения светодиодного дисплея в режиме РАБОТА

Значения	
светодиодного дисплея	Описание значений
nn	Выход за верхнюю границу диапазона выходного токового сигнала
0099,	Уровень выходного сигнала в процентах от диапазона. Символ отображает 100 %
UU	Выход за нижнюю границу диапазона выходного токового сигнала

Преобразователь рассчитан на подключение датчиков по трехпроводной схеме. Подключение датчика должно осуществляться при отключенном питании.

5.2.2 Режим **АВАРИЯ**

При возникновении аварийных ситуаций (см. таблицу 7) преобразователь переходит в режим **АВАРИЯ**.

В режиме АВАРИЯ:

- начинает мигать индикатор **АВАРИЯ**;
- на светодиодном дисплее отображается код аварийной ситуации;
- токовый выходной сигнал принимает аварийное значение согласно таблице 8;
- бар-граф отображает уровень аварийного выходного сигнала.

Таблица 7 – Аварийные ситуации и их коды

Код аварийной ситуации	Описание аварийной ситуации						
In	Обрыв или замыкание входной цепи						
Ou	Обрыв выходной цепи или превышение максимально- допустимого сопротивления нагрузки (только для выходного токо- вого сигнала (420) мА)						
Er	Внутренняя неисправность преобразователя						
br	Ошибка установки границ преобразования (Ниж. Гран. > Верх. Гран.)						

Таблица 8 – Аварийные уровни выходного сигнала

- 1	· · · · · · · · · · · · · · · · · · ·			
	Диапазон выходного	Низкий уровень	Высокий уровень	
	токового сигнала	аварийного сигнала		
(05) мА		0 мА	5,5 мА	
	(020) мА	0 мА	21,5 мА	
	(420) мА	3,6 мА	21,5 мА	

Уровень выходного сигнала в аварийной ситуации (высокий или низкий) устанавливается параметром «АВАР. УР.». Формирование аварийного уровня выходного сигнала позволяет внешним системам по величине сигнала определять наличие аварийных ситуаций, обнаруженных преобразователем.

Выход из режима **АВАРИЯ** в режим **РАБОТА** осуществляется автоматически при исчезновении аварийной ситуации.

Кнопка « Δ » в режиме **АВАРИЯ** не функционирует. Нажатие на кнопку « \blacktriangleleft » переводит в режим **КОНФИГУРИРОВАНИЕ**.

ВНИМАНИЕ: Для диапазонов от 0 до 5 мА и от 0 до 20 мА аварийная ситуация «обрыв выходной цепи» – не определяется.

5.2.3 Режим КОНФИГУРИРОВАНИЕ

Режим **КОНФИГУРИРОВАНИЕ** предназначен для настройки функций преобразователя.

Режим **КОНФИГУРИРОВАНИЕ** не влияет на формирование выходного токового сигнала. При возникновении аварийной ситуации в режиме **КОНФИГУРИРО-ВАНИЕ** выходной сигнал переходит в соответствующий аварийный уровень.

Предусмотрено два способа входа в режим КОНФИГУРИРОВАНИЕ:

- вход для просмотра значений параметров;
- вход для просмотра и изменения значений параметров.

Вход в режим **КОНФИГУРИРОВАНИЕ** для просмотра значений параметров осуществляется из режима **РАБОТА** или из режима **АВАРИЯ** кратковременным нажатием на кнопку « ◄ ». При этом параметр «**ПАРОЛЬ**» пропускается, просматривается сразу параметр «**ВХОД**».

Вход в режим **КОНФИГУРИРОВАНИЕ** для изменения значений параметров осуществляется из режима **РАБОТА** или из режима **АВАРИЯ** следующим образом:

- отпустить кнопку « ◄ ». При помощи кнопки «Δ» выбрать значение пароля 05. Это значение устанавливается предприятием изготовителем для всех преобразователей данного типа и не подлежит изменению.
- нажать на кнопку « ◄ ». В случае правильного ввода пароля на светодиодном дисплее кратковременно высветится сообщение **Ac** и осуществится переход к просмотру и изменению параметра «**BXOД**». При ошибочном значении введенного пароля кратковременно высветится сообщение **Er** и преобразователь перейдет к режиму **РАБОТА**.

Кнопка « \checkmark » осуществляет переход к следующему параметру, кнопка « Δ » меняет значения параметров. При удержании кнопки « Δ » происходит быстрое изменение значения параметра.

Выход из режима **КОНФИГУРИРОВАНИЕ** осуществляется кнопкой « **→** » после последнего параметра или автоматически по истечении 30 с с момента последнего нажатия на любую кнопку.

Параметры преобразователя, доступные в меню **КОНФИГУРИРОВАНИЕ** для просмотра или для изменения, приведены в таблице 9.

Таблица 9 – Состав меню КОНФИГУРИРОВАНИЕ

Код параметра на лицевой наклейке	Название параметра	Значения светодиодно- го дисплея	Описание значений параметров
		0099	Диапазон доступных для выбора значений текущего пароля. При просмотре параметров значение не отображается. Пароль – 05.
ПАРОЛЬ	Пароль	Ac	Кратковременно возникающее сообщение при нажатии на кнопку « » в случае выбора правильного значения пароля
		Er	Кратковременно возникающее сообщение при нажатии на кнопку « "» в случае выбора неправильного значения пароля
вход	ВХОД Тип входного сигнала 01, 02,(Номер типа входного сигнала, согласно таблицы 1
выход	Диапазон вы- ходного токово-	0.2	(020) мА
		4.2	(420) мА
	го сигнала	0.5	(05) MA

Код параметра на лицевой наклейке	Название параметра	Значения светодиодно- го дисплея	Описание значений параметров
Ниж. Гран.	Нижняя грани- ца преобразо- вания		Положение движка потенциометрического датчика, которое будет преобразовано в нижнюю границу выходного сигнала. Нажатие на кнопку «Δ» автоматически выберет текущее измеренное положение движка потенциометра
Верх. Гран.	Верхняя грани- ца преобразо- вания	01	Положение движка потенциометрического датчика, которое будет преобразовано в верхнюю границу выходного сигнала. Нажатие на кнопку «Δ» автоматически выберет текущее измеренное положение движка потенциометра. Символ отображает 00 %
СДВИГ	Ручная поправ- ка к положению движка потен- циометра	-910	Компенсирующее (добавляемое значение – от минус 9 до плюс 10 %
АВАР. УР. Аварийный уровень выход-		HL	Высокий уровень аварийного сигнала, согласно таблицы 3

Код параметра на лицевой наклейке	Название параметра	Значения светодиодно- го дисплея	Описание значений параметров		
	ного сигнала	LL	Низкий уровень аварийного сигнала, согласно таблицы 3		
	Светодиодная индикация		Индикация уровня бар-графом включена		
ШКАЛА	уровня выход- ного сигнала бар-графом	OF	Индикация уровня бар-графом выключена		

5.2.4 Настройка границ преобразования

Для того, чтобы выбрать нижнюю и верхнюю границу преобразования необходимо проделать следующее.

- 1. Войти в режим **КОНФИГУРИРОВАНИЕ** и выбрать параметр **Ниж. Гран.**
- 2. Установить движок потенциометра в положение, соответствующее началу отсчета (минимума).
- Нажать на кнопку «∆». Данному положению потенциометра будет соответствовать нижняя граница выходного тока (0 или 4 мА в зависимости от выбранного диапазона выходного тока).
- 4. Перейти к параметру Верх. Гран.

- 5. Установить движок потенциометра в положение, соответствующее концу отсчета (максимума).
- 6. Нажать на кнопку «△». Данному положению потенциометра будет соответствовать верхняя граница выходного тока (5 или 20 мА в зависимости от выбранного диапазона выходного тока).
- 7. Нажатием на кнопку « > выйти из режима **КОНФИГУРИРОВАНИЕ.**

6 Размещение и подключение преобразователя

6.1 Размещение преобразователя

Преобразователи рассчитаны для монтажа на шину (DIN-рельс) типа NS 35/7,5/15. Крепление осуществляется металлическим кронштейном на корпусе прибора. Преобразователь должен быть установлен в месте, исключающем попадание воды, посторонних предметов, большого количества пыли внутрь корпуса.

На рисунке 3 приведены габаритные размеры преобразователей.

Внимание! Не рекомендуется установка преобразователей рядом с источниками тепла, веществ, вызывающих коррозию.

6.2 Подключение преобразователей

Предупреждение! Подключение преобразователей должно осуществляться при отключенном питании. Электрические соединения осуществляются с помощью разъемных клеммных соединителей X1, X2 и X3. Клемма X4 не задействована. Клеммы рассчитаны на подключение проводников с сечением не более 2,5 мм². Схема подключения преобразователя приведена на рисунке 4 и рисунке 5.

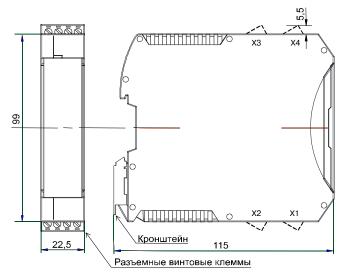


Рисунок 3 – Габаритные размеры преобразователя

Рисунок 4 – Электрическая схема подключения преобразователя НПСИ-ПМХ-X-220- МХ

Рисунок 5 – Электрическая схема подключения преобразователя НПСИ-ПМХ-X-24- МХ

7 Указание мер безопасности

Эксплуатация и обслуживание преобразователя должны производиться лицами, за которыми он закреплен.

По способу защиты человека от поражения электрическим током преобразователь НПСИ-ПМХ-X-220-МX соответствует классу **II** по ГОСТ 12.2.007.0.

По способу защиты человека от поражения электрическим током преобразователь НПСИ-ПМХ-X-24-МХ соответствует классу **III** по ГОСТ 12.2.007.0 (оборудование с питанием от безопасного сверхнизкого напряжения) и не требует специальной защиты персонала от случайных соприкосновений с токоведущими частями.

При эксплуатации, техническом обслуживании и поверке преобразователя необходимо соблюдать требования указанного ГОСТа.

Подключение преобразователя к электрической схеме и отключение его должно происходить при выключенном питании.

При эксплуатации преобразователя необходимо выполнять требования техники безопасности, изложенные в документации на средства измерения и оборудование, в комплекте с которыми он работает.

8 Правила транспортирования и хранения

Преобразователь должен транспортироваться в закрытых транспортных средствах любого вида в транспортной таре при условии защиты от прямого воздействия атмосферных осадков.

Условия хранения:

- температура окружающего воздуха от минус 55 до плюс 70°C;
- относительная влажность воздуха до 95 % при температуре 35 °C;
- воздух в месте хранения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

9 Гарантийные обязательства

Предприятие-изготовитель гарантирует соответствие выпускаемых барьеров заявленным техническим характеристикам, приведенным в паспорте, при соблюдении потребителем всех допустимых условий и режимов эксплуатации, транспортирования и хранения.

Предприятие-изготовитель оставляет за собой право внесения изменений в конструкцию и эксплуатационную документацию приборов без предварительного уведомления потребителей.

Длительность гарантийного срока – 36 месяцев. Гарантийный срок исчисляется от даты отгрузки (продажи) прибора. Документом, подтверждающим гарантию, является паспорт (или формуляр) с отметкой предприятия-изготовителя.

Гарантийный срок продлевается на время подачи и рассмотрения рекламации, а также на время проведения гарантийного ремонта силами изготовителя в период гарантийного срока.

Предприятие-изготовитель не берет на себя ответственность за прямые или косвенные убытки, которые может понести потребитель вследствие неработоспособности прибора. Требуемые параметры надежности и ремонтопригодности систем должны обеспечиваться потребителем за счет применения соответствующих системотехнических решений и поддержания запасов ЗИП.

Гарантийные обязательства выполняются предприятием-изготовителем на своей территории. Доставка прибора на территорию предприятия-изготовителя для осуществления гарантийного ремонта осуществляется потребителем своими силами и за свой счет.

11 Свидетельство о приёмке

Преобразователь нормирующи	й НПСИ-	230	-ПМ10-0С	M	
Заводской номер №					
Дата выпуска "				_ 20 :	г
Представитель ОТК				440	
Первичная поверка проведена	должность	"	подпись	ФИО 20	г
Поверитель					·
	лолжность		полпись	ФИО	

Приложение А

ПИМФ.422189.001 ПМ Преобразователи сигналов измерительные нормирующие НПСИ серии NNN. Методика поверки

А.1 Общие положения и область распространения

- **А.1.1** Настоящая методика распространяется на «Преобразователи сигналов измерительные нормирующие НПСИ серии NNN» **НПСИ-ПМХ-X-X-МХ**, выпускаемых по техническим условиям ПИМФ.422189.001 ТУ (в дальнейшем преобразователи), и устанавливает порядок первичной и периодических поверок.
- **А.1.2** В настоящей методике использованы ссылки на следующие нормативные документы: «Преобразователи измерительные **НПСИ-230-ПМ10.** Паспорт ПИМФ.422189. 015 ПС».
- **А.1.3** Проверка преобразователей проводится для определения метрологических характеристик и установление их пригодности к применению.
- **А.1.4** Первичная поверка преобразователей проводится на предприятииизготовителе при выпуске.
- **А.1.5** Интервал между поверками **5 лет**.

А.2 Операции поверки

- **А.2.1** При проведении поверки преобразователей выполняют операции, перечисленные в таблице А.2.1 (знак «+» означает необходимость проведения операции).
- **А.2.2** При получении отрицательных результатов поверки преобразователь бракуется.

Таблица А.2.1 – Перечень операций поверки

Наименование	Номер п.п. Ме-	Операции поверки				
операции	тодики поверки	Первичная поверка	Периодическая поверка			
1 Внешний осмотр	A.6.1	+	+			
2 Опробование	A.6.2	+	+			
3 Определение						
метрологических	A.6.3	+	+			
характеристик						

А.3 Средства поверки

Перечень средств измерений, используемых при поверке, приведен в таблице A.3.1.

Таблица A.3.1 – Перечень средств измерений и вспомогательного оборудования, используемых при поверке

Номер пункта методики поверки	Наименование и тип основного средств измерений,
	используемых при поверке.
	Основные технические характеристики средства поверки
	Калибратор электрических сигналов СА51 (СА71).
	Основная погрешность ± 0,03 %
A.6.3.1	Магазин сопротивлений Р4381 (2 прибора)
	Основная погрешность ± 0,03 %

<u>Примечание:</u> Вместо указанных в таблице А.З.1 средств измерений разрешается применять другие аналогичные измерительные приборы, обеспечивающие измерения соответствующих параметров с требуемой погрешностью.

А.4 Все средства измерений, используемые при поверке, должны быть поверены в соответствии с требованиями Приказа Минпромторга № 1815 от 02.07.2015 Порядок проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке

А.5 Требования по безопасности

При проведении поверки необходимо соблюдать требования безопасности, предусмотренные ГОСТ 12.2.007.0, указания по безопасности, изложенные в пас-

портах на преобразователи, применяемые средства измерений и вспомогательное оборудование.

А.6 Условия поверки и подготовка к ней

- **А.6.1** Поверка преобразователей должна проводиться при нормальных условиях:
 - температура окружающего воздуха (23±5) °C;
 - относительная влажность от 30 до 80 %;
 - атмосферное давление от 86 до 106 кПа;
 - напряжение питания ~(220±22) В, 50 Гц или ==(24±2,4) В в зависимости от модификации преобразователя;
 - отсутствие внешних электрических и магнитных полей, влияющих на работу преобразователей.

А.6.2 Перед началом поверки поверитель должен изучить следующие документы:

- Преобразователи измерительные НПСИ-230-ПМ10. Паспорт ПИМФ.422189.015 ПС;
- Инструкции по эксплуатации на СИ и оборудование, используемых при поверке;
- Инструкции по охране труда и правила техники безопасности.

А.6.3 До начала поверки СИ и оборудование, используемые при поверке, должны быть в работе в течение времени самопрогрева, указанного в документации на них.

А.7 Проведение поверки

А.7.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие комплектности преобразователя паспорту;
- состояние корпуса преобразователя;
- состояние соединителей X1-X4.

А.7.2 Опробование

Опробование предусматривает включение преобразователя и проверку работоспособности органов управления и индикации преобразователя в режиме КОНФИГУРИРОВАНИЯ (п. 5.2.3).

А.7.3 Определение метрологических характеристик

Определение метрологических характеристик проводится путем подачи входных сигналов от магазинов сопротивления, включенных по схеме потенциометра,

и измерения выходных унифицированных сигналов постоянного тока при помощи калибратора электрических сигналов.

А.7.3.1 Определение основной погрешности преобразования входных сигналов от магазинов сопротивления в унифицированные сигналы постоянного тока в диапазоне выходного тока от 4 до 20 мА

Порядок проведения поверки:

- подключить преобразователь по схеме, приведенной на рисунке А.6.3.1;
- прогреть преобразователь при включенном питании в течение 5 мин;
- произвести конфигурирование преобразователя по параметрам из таблицы 9 паспорта:
 - Тип входного сигнала ВХОД (01);
 - Диапазон выходного токового сигнала ВЫХОД (4.2);
 - Нижняя граница преобразования Ниж. Гран. (0);
 - Верхняя граница преобразования Верх. Гран. (
 - Ручная поправка к положению движка потенциометра **СДВИГ (0)**.

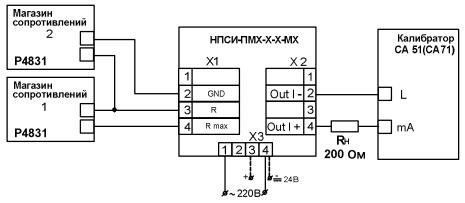


Рисунок А.6.3.1 – Подключение преобразователей

- включить питание калибратора электрических сигналов;
- устанавливать значения сопротивления контрольных точек (берутся из таблицы A.6.3.1) на входе преобразователя с помощью магазинов сопротивления;

Таблица А.6.3.1 – Значения контрольных точек для поверки преобразователей

№ контрольной точки	1	2	3	4	5	6		
НПСИ-ПМ-0-X- МХ Потенциометр номинальным сопротивлением 10 кОм								
Сопротивление магазина 1, Ом	10000	8000	6000	4000	2000	0		
Сопротивление магазина 2, Ом	0	2000	4000	6000	8000	10000		
Выходной ток І _{расч} , мА	4	7,2	10,4	13,6	16,8	20		

- зафиксировать выходной ток преобразователя $\emph{\textbf{I}}_{\text{вых}} = \emph{\textbf{I}}_{\text{изм}}$ по показаниям калибратора;
 - рассчитать погрешность измерения по выходному току по формуле (А1).

$$\Delta = | I_{\text{вых}} - I_{\text{расч}} |, \text{ MA} \qquad (A1)$$

Івых – измеренное значение выходного тока, мА;

Ірасч – расчетное значение выходного тока (таблица A.6.3.1), мА;

- повторить операции для оставшихся контрольных точек;
- считать преобразователь прошедшим поверку, если для всех контрольных точек погрешность Δ находится в пределах (A2):

$$\Delta = \pm 0.016 \text{ MA}$$
 (A2)

ЗАКАЗАТЬ: НПСИ-230-ПМ10 преобразователь

При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется) и отправляется для проведения ремонта на предприятие изготовитель.

А.8 Оформление результатов поверки

- **А8.1** Результаты поверки оформляются в порядке, установленным метрологической службой, которая осуществляет поверку, в соответствии с Приказом Минпромторга России от 02.07.2015 г. № 1815.
- **А8.2** Если преобразователь по результатам поверки признан пригодным к применению, то на него выдается свидетельство о поверке или делается запись в паспорте, заверяемая подписью поверителя и знаком поверки.
- **А8.3** В случае отрицательных результатов поверки преобразователь признают непригодным к применению и направляют в ремонт. Свидетельство о поверке аннулируется, выписывается извещение о непригодности к применению и вносится запись о непригодности в паспорт.
- **А8.4** Критерием предельного состояния преобразователя является невозможность или нецелесообразность его ремонта.

Преобразователь, не подлежащий ремонту, изымают из обращения и эксплуатации.

ЗАКАЗАТЬ: НПСИ-230-ПМ10 преобразователь