ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ ПОСТОЯННОГО ТОКА И НАПРЯЖЕНИЯ E856ЭЛ

Руководство по эксплуатации 0ПЧ.140.316

СОДЕРЖАНИЕ

Ли	C
Введение	
1 Описание	
1.1 Назначение	
1.2 Технические характеристики	
1.3 Дополнительные параметры и характеристики преобразователей,	
предназначенных для эксплуатации на морских судах	2
1.4 Дополнительные параметры и характеристики преобразователей,	
предназначенных для эксплуатации на АЭС	5
1.5 Устройство и принцип работы	6
1.5.1 Устройство и принцип работы преобразователей,	
имеющих исполнения с интерфейсами	6
1.5.2 Устройство и принцип работы преобразователей,	
не имеющих исполнения с интерфейсами	3
1.6 Маркировка)
2 Средства измерений, инструменты и принадлежности)
3 Использование по назначению	l
3.1 Меры безопасности	1
3.2 Подготовка к работе	1
3.3 Порядок работы	2
4 Транспортирование и хранение 24	1
5 Гарантии изготовителя	5
6 Сведения о рекламациях	5
7 Утилизация	5
Приложение А (обязательное) Общий вид, габаритные и установочные	
размеры преобразователя 27	7
Приложение Б (рекомендуемое) Структурные схемы	
преобразователей)
Приложение В (обязательное) Схема внешних подключений	
преобразователя	l
Приложение Г (обязательное) Протокол обмена данными по	
интерфейсам	3

Данное руководство по эксплуатации предназначено для ознакомления с техническими характеристиками, устройством и принципом работы преобразователей измерительных постоянного тока и напряжения Е856ЭЛ в объеме, необходимом для эксплуатации.

1 ОПИСАНИЕ

1.1 Назначение

- 1.1.1 Преобразователи измерительные постоянного тока и напряжения Е856ЭЛ (далее преобразователи) предназначены для линейного преобразования постоянного тока и напряжения в электрических цепях с номинальным напряжением до 1000 В в унифицированный выходной сигнал постоянного тока.
- 1.1.2 Преобразователи применяются для контроля токов и напряжений электрических систем и установок, для комплексной автоматизации объектов электроэнергетики, АСУ ТП энергоемких объектов различных отраслей промышленности.
- 1.1.3 Возможность обмена информацией по интерфейсу RS485 позволяет использовать преобразователи для передачи информации в цифровом коде в автоматизированную систему или на персональный ЭВМ.

Преобразователи могут иметь исполнение без интерфейса RS485.

- 1.1.4 Преобразователи могут применяться для работы в составе технических средств атомных станций (TC AC) в соответствии с классом безопасности 4 по НП-001-15.
- 1.1.5 Преобразователи могут применяться для работы на морских судах, предназначенных для неограниченного района плавания.

Преобразователи, предназначенные для эксплуатации на морских судах, по устойчивости к климатическим и механическим воздействиям соответствуют требованиям Российского морского регистра судоходства (Приложение 13, 14 р.10, ч.IV Пр. РС/ТН).

Преобразователи, предназначенные для эксплуатации на морских судах, относятся к климатическому исполнению ОМ, категория размещения 2, для рабо-

ты при температуре от минус 40 до плюс 55 °C и относительной влажности 95% при температуре плюс 25 °C.

1.1.6 Преобразователи, имеющие исполнение с интерфейсами, относятся к двуканальным изделиям и имеют гальваническую развязку между входными и выходными цепями.

Преобразователи, не имеющие исполнение с RS485, относятся к одноканальным изделиям с гальванической развязкой между входными и выходными цепями.

- 1.1.7 Преобразователи изготавливаются для эксплуатации в условиях умеренно-холодного климата (климатическое исполнение УХЛ категории 3 по ГОСТ 15150-69), по устойчивости к воздействию климатических факторов соответствуют группе С4 по ГОСТ Р 52931-2008 и предназначены для работы в интервале температур от минус 40 до плюс 50 °С и относительной влажности 95 % при температуре плюс 35 °С.
- 1.1.8 По устойчивости к воздействию атмосферного давления преобразователи относятся к группе Р1 по ГОСТ Р 52931-2008 и предназначены для эксплуатации при атмосферном давлении от 84 до 106,7 кПа (630 800 мм рт. ст.).
- 1.1.9 По устойчивости к механическим воздействиям преобразователи относятся к виброустойчивым и вибропрочным, группа N2 по ГОСТ Р 52931-2008.
- 1.1.10 По степени защиты от поражения электрическим током преобразователи соответствуют оборудованию класса 0 по ГОСТ 12.2.007.0-75.
- 1.1.11 По пожарной безопасности преобразователи соответствуют требованиям ГОСТ 12.1.004-91, требования обеспечиваются схемотехническими решениями, применением соответствующих материалов и конструкцией и проверке не подлежат.
 - 1.1.12 Степень защиты по ГОСТ 14254-2015 для преобразователей IP50.
- 1.1.13 Преобразователи предназначены для установки на металлическую рейку шириной 35 мм в соответствии со стандартом EN 50022 или непосредственно на панель.
- 1.1.14 Преобразователи не предназначены для установки и эксплуатации во взрывоопасных и пожароопасных зонах по ПУЭ.

- 1.1.15 Преобразователи являются взаимозаменяемыми, восстанавливаемыми, ремонтируемыми изделиями.
- 1.1.16 Информация об исполнении преобразователя содержится в коде полного условного обозначения:

$$E8569JI - a - b - c - d - e - f$$

где а – диапазон измерения (преобразования) входного сигнала;

b – условное обозначение напряжения питания:

220ВУ – универсальное питание: напряжение питания от 85 до 264 В переменного тока частотой 50 Гц или от 100 до 370 В постоянного тока;

230В – напряжение питания от 85 до 264 В переменного тока частотой 50 Гц;

12ВН – (12+6/-3) В постоянного тока;

24ВН – (24+12/-6) В постоянного тока

с – условное обозначение диапазона изменения выходного аналогового сигнала:

$$A=0...5 \text{ MA}; B=4...20 \text{ MA}; C=0...20 \text{ MA}; AP=0...2,5...5 \text{ MA};$$

$$\mathbf{BP} = 4...12...20 \,\mathrm{mA}$$
; $\mathbf{CP} = 0...10...20 \,\mathrm{mA}$; $\mathbf{EP} = -5...0...+5 \,\mathrm{mA}$;

 ${\bf x}$ – при отсутствии параметра (только для преобразователей, изготавливаемых с RS485);

d – условное обозначение диапазона изменения дополнительного выходного аналогового сигнала:

$$A=0...5 \text{ mA}$$
; $B=4...20 \text{ mA}$; $C=0...20 \text{ mA}$; $AP=0...2,5...5 \text{ mA}$;

$$\mathbf{BP} = 4...12...20 \,\text{MA}$$
; $\mathbf{CP} = 0...10...20 \,\text{MA}$; $\mathbf{EP} = -5...0... + 5 \,\text{MA}$;

х – при отсутствии параметра;

е – наличие интерфейса:

1RS – один интерфейс RS485 (основной);

2RS – два интерфейса RS485 (основной и дополнительный);

х – интерфейс отсутствует

f - специальное исполнение:

А – для эксплуатации на атомных станциях (класс безопасности 4);

ОМ2 – для эксплуатации на морских судах (только для преобразователей, изготавливаемых с RS485);

- при отсутствии специального исполнения параметр не указывается.

Пример:

- для преобразователя, имеющего следующие характеристики: тип преобразователя Е856ЭЛ, диапазон измерения (преобразования) входного сигнала от 0 до 250 В, напряжение питания от 85 до 264 В переменного тока частотой 50 Гц или от 100 до 370 В постоянного тока, диапазон изменения выходного аналогового сигнала 0...10...20 мА, один интерфейс RS485, эксплуатация на морских судах

$$E856ЭЛ - 0...250B - 220BУ - CP - x - 1RS - OM2 ТУ 25-7504.216-2011$$

- для преобразователя, имеющего следующие характеристики: тип преобразователя E856ЭЛ, диапазон измерения входного сигнала от 0 до 20 мА, напряжение питания (12+6/-3)В постоянного тока, диапазон изменения выходного аналогового сигнала 0...20 мА, один интерфейс RS485

E8569Л - 0...20мA - 12BH - C - x - 1RS ТУ 25-7504.216-2011

- для преобразователя, имеющего следующие характеристики: тип преобразователя Е856ЭЛ, диапазон измерения (преобразования) входного сигнала от - 75 до 75 мВ, напряжение питания от 85 до 264 В переменного тока частотой 50 Гц, диапазон изменения выходного аналогового сигнала 0...2,5...5 мА, диапазон изменения дополнительного выходного аналогового сигнала 4...20 мА, два интерфейса RS485, эксплуатация на атомных станциях (класс безопасности 4)

E8569Л - -75...0...75мB - 230B - AP - B - 2RS - A ТУ 25-7504.216-2011

- для преобразователя, имеющего следующие характеристики: тип преобразователя E856ЭЛ, диапазон измерения (преобразования) входного сигнала от 4 до 20 A, напряжение питания от 85 до 264 В переменного тока частотой 50 Гц или от 100 до 370 В постоянного тока, диапазон изменения выходного сигнала 4...20 мA, диапазон изменения дополнительного выходного сигнала 0...5 мA, отсутствие интерфейса RS485

E856ЭЛ - 4...20A - 220BУ - B - A - x ТУ 25-7504.216-2011

- для преобразователя, имеющего следующие характеристики: тип преобразователя Е856ЭЛ, диапазон измерения (преобразования) входного сигнала от 0 до 75 мВ, напряжение питания от 85 до 264 В переменного тока частотой 50 Гц, диапазон изменения выходного сигнала 0...5 мА, отсутствие интерфейса RS485

$$E8569Л - 0...75мB - 230B - A - x - x$$
 ТУ 25-7504.216-2011

1.2 Технические характеристики

1.2.1 Нормальные условия эксплуатации преобразователей соответствуют значениям, указанным в таблице 1.

Таблица 1

Влияющий фактор	Нормальное значение
Температура окружающего воздуха, °С	20 ± 2
Относительная влажность окружающего воздуха, %	от 30 до 80
Атмосферное давление, кПа (мм. рт. ст.)	от 84 до 106,7 (от 630 до 800)
Источник питания:	
напряжение, В	$220 \pm 4,4$
частота, Гц	$50 \pm 0,5$
Форма кривой напряжения источника питания	Синусоидальная, с коэффициентом искажения не более 5 %
Рабочее положение преобразователя	Любое

1.2.2 Преобразователи могут иметь диапазон измерения (преобразования) входного сигнала в пределах от 0 до 75 мВ, от 0 до 100В или от 0 до 20 мА, диапазоны измерений -75...0...75 мВ, 4...20 мА, -5...0...5мА.

Примеры диапазонов измерения (преобразования), диапазон изменения выходного тока и сопротивление нагрузки приведены в таблице 2.

Таблица 2 – Примеры диапазонов измерения (преобразования)

' '	реобразования го сигнала	Диапазон изменения выходного аналогового сигнала, мА		Нормирую-	Сопротивление нагрузки не бо-
постоянный ток, мА	напряжение по- стоянного тока	выход 1	выход 2	значение	лее, Ом
	075 мВ	05	05	5	02500
	-75075 мВ 060 В	020 420	020 420	20	0500
-	0100 B 0150 B	02,55	02,55	5	02500 02000
	0250 B 0500 B 01000 B	41220 01020	41220 01020	20	0500
		05	05	5	02500
05		020 420	020 420	20	0500
420 020 -505	-	02,55 -505	02,55 -505	5	02500 02000
		41220 01020	41220 01020	20	0500

1.2.3 Преобразователи могут иметь одноканальное и двуканальное исполнение по выходу.

Преобразователи имеют диапазоны изменения выходного аналогового сигнала в соответствии с таблицей 2.

Информацию несет среднее значение выходного аналогового сигнала.

1.2.4 Преобразователи могут иметь интерфейсы RS485 для связи с внешними устройствами.

В преобразователе устанавливается сетевой адрес от 1 до 247 и скорость обмена: 4800, 9600, 19200, 38400 бод. Протокол обмена данными – MODBUS RTU.

1.2.5 Напряжение питания преобразователей сответствует значениям, указанным в таблице 3.

Таблица 3

Условное обозначение напряжения питания (параметр b *)	Напряжение питания		
12BH	(12+6/-3) В постоянного тока		
24BH	(24+12/-6) В постоянного тока		
230B	от 85 до 264 В переменного тока частотой 50 Гц		
220ВУ от 85 до 264 В переменного тока частотой (50 \pm 0,5) Гц или от 100 до 370 В постоянного тока			
* Параметр кода условного обозначения $E856ЭЛ - a - b - c - d - e - f$			

- 1.2.6 Мощность потребления преобразователями не более:
- 1 Вт от цепи входного сигнала (для параллельной цепи);
- 0,01 Вт от цепи входного сигнала (для последовательной цепи);
- 6 В А от цепи питания.
- 1.2.6.1 Входное сопротивление при измерении напряжения постоянного тока не менее (1-0,005) МОм.
- 1.2.6.2 Напряжение нагрузки при измерении силы постоянного тока величиной, равной верхнему пределу диапазона измерений (100 ± 10) мВ.
- 1.2.7 Время установления рабочего режима преобразователей не более 15 мин.

1.2.8~ Предел допускаемой основной приведенной погрешности преобразователей равен $\pm 0.5~$ % от нормирующего значения выходного сигнала во всем диапазоне изменений сопротивления нагрузки преобразователей.

Предел допускаемого значения основной погрешности выражен в виде приведенной погрешности. Нормирующее значение при установлении приведенной погрешности соответствует значениям, указанным в таблице 2.

- 1.2.9 Пределы допускаемых дополнительных погрешностей преобразователей, вызванных изменением влияющих величин от нормальных значений, указанных в 1.2.1, не превышают:
- а) $\pm 0.4 \%$ при изменении температуры окружающего воздуха от (20 ± 5) °C до минус 40 и плюс 50 °C на каждые 10 °C;
- б) \pm 0,5 % при отклонении относительной влажности воздуха от нормальной (30 80) до 95 % при температуре плюс 35 °C;
- в) \pm 0,5 % при влиянии внешнего однородного магнитного поля переменного тока с магнитной индукцией 0,5 мТл при самом неблагоприятном направлении магнитного поля;
- Γ) \pm 0,25 % при изменении напряжения питания преобразователей от номинального значения 220 В до 264 и 85 В.
- $_{\rm J}$ $_{\rm J}$
- 1.2.10 Время установления выходного сигнала преобразователей при скачкообразном изменении входного сигнала от начального до любого значения внутри диапазона измерения (преобразования) не более 0,5 с.
- 1.2.11 Преобразователи выдерживают без повреждений двухчасовую перегрузку входным сигналом, равным 120 % от номинального значения.

Выходное напряжение на зажимах аналогового выходного сигнала при перегрузке не превышает 30 В на максимальной нагрузке.

1.2.12 Преобразователи выдерживают кратковременные перегрузки входным сигналом с кратностью от номинального значения сигнала в соответствии с таблицей 4.

Таблица 4

Тип	Кратность К		атность К число		Интервал
преобразователя	ток	напряжение	перегрузок	каждой перегрузки, с	между двумя перегрузками, с
	2	-	10	10	10
Последовательные	7	-	2	15	60
цепи (тока)	10	-	5	3	2,5
	20	-	2	0,5	0,5
Параллельные цепи (напряжение)	-	1,5	9	0,5	15

Выходное напряжение на зажимах при перегрузках не превышает 30 В на максимальной нагрузке.

1.2.13 Преобразователи выдерживают без повреждений разрыв нагрузки на аналоговом выходе при номинальном значении входного сигнала.

Величина напряжения на разомкнутых выходных зажимах не превышает 30 В.

- 1.2.14 Преобразователи соответствуют требованию 1.2.8 при заземлении одного из выходных контактов.
- 1.2.15 Изоляция между входной цепью и питанием, между входной и выходной цепями, между корпусом и изолированными от корпуса цепями, между выходной цепью и питанием, между гальванически развязанными цепями, выдерживает в течение 1 мин действие испытательного напряжения практически синусоидальной формы частотой от 45 до 65 Гц указанного в таблице 5.
 - 1.2.16 Электрическое сопротивление изоляции цепей не менее:
 - 40 МОм в нормальных условиях применения;
- 10 MOм при температуре окружающего воздуха плюс 50 °C и относительной влажности не более 80 %;
- -2 МОм при температуре окружающего воздуха плюс (20 ± 2) °C и относительной влажности 95 %.
- 1.2.17 По устойчивости к климатическим воздействиям преобразователи предназначены для эксплуатации при температуре от минус 40 до плюс 50 °C и относительной влажности 95 % при температуре 35 °C.

Таблица 5

, ,	Диапазон измерения входного сигнала		
постоянный	напряжение постоянного	,	
ток	тока		
	075 мВ		
	-75075 мВ		
	060 B		
-	0100 B	2000	
	0150 B		
	0250 B		
	0500 B		
	01000 B	3000	
05 мА			
420 мА	-	2000	
020 мА			
-505 мА			

- 1.2.18 Преобразователи являются тепло-, холодо-, влагопрочными, т.е. сохраняют свои характеристики после воздействия на них температуры от минус 50 до плюс 55 °C и относительной влажности воздуха не более 95 % при температуре плюс 35 °C, соответствующих предельным условиям транспортирования.
- 1.2.19 Преобразователи в транспортной таре обладают прочностью при транспортировании, т.е. выдерживают без повреждений в течение 1 часа транспортную тряску с ускорением 30 m/c^2 , частотой от 80 до 120 ударов в минуту.
- 1.2.20 По механическим воздействиям преобразователи являются виброустойчивыми и вибропрочными, группа N1 по ГОСТ Р 52931-2008, т.е. преобразователи устойчивы и прочны к воздействию синусоидальной вибрации в диапазоне частот от 10 до 55 Гц при амплитуде смещения 0,15 мм.
- 1.2.21 По защищенности от воздействия твердых тел преобразователи соответствуют коду IP50 по ГОСТ 14254-2015.
 - 1.2.22 Требования к конструкции
- 1.2.22.1 Преобразователи относятся к изделиям, которые не требуется размещать внутри других изделий при эксплуатации.
- 1.2.22.2 Преобразователи являются взаимозаменяемыми, восстанавливаемыми, ремонтируемыми изделиями, эксплуатируемыми в стационарных условиях производственных помещений вне жилых домов.

- 1.2.22.3 Преобразователи изготавливаются в пластмассовом корпусе с габаритами, не более:
- $70 \times 85,5 \times 89$ мм для преобразователей, имеющих исполнения с интерфейсами;
- $70 \times 86 \times 80$ мм для преобразователей, не имеющих исполнение с интерфейсами.
- 1.2.22.4 Масса преобразователей не более 0,4 кг. Масса преобразователей, не имеющих исполнение с интерфейсом, не более 0,5 кг.
- 1.2.22.5 Внешние подключения выполняются при помощи зажимов клеммной колодки, обеспечивающих подключение медных или алюминиевых проводов сечением от $0.13~\mathrm{mm}^2$ (d = $0.4~\mathrm{mm}$) до $7.07~\mathrm{mm}^2$ (d = $3~\mathrm{mm}$).
 - 1.2.23 Требования к надежности
- 1.2.23.1 Норма средней наработки на отказ преобразователей не менее 200000 ч в условиях эксплуатации.
 - 1.2.23.2 Средний срок службы не менее 20 лет.
- 1.2.23.3 Преобразователи относятся к восстанавливаемым, ремонтируемым изделиям. Среднее время восстановления работоспособного состояния преобразователей не более 1 ч.

1.3 Дополнительные параметры и характеристики преобразователей, предназначенных для эксплуатации на морских судах

1.3.1 Преобразователи устойчивы к отклонению напряжения и частоты от номинальных значений параметров питания, указанных в таблице 6. Основная погрешность преобразователей при отклонении напряжения и частоты питания не должна превышать пределов допускаемой основной погрешности, указанных в 1.2.8

Преобразователи, получающие питание от аккумуляторных батарей, должны надежно работать при отклонениях напряжения питания от +30 до -25 % от номинального значения.

Трехкратное исчезновение питания в течение 5 мин продолжительностью по 30 с не оказывает влияния на работоспособность преобразователей.

Таблица 6

	Отклонение от номинальных значений			
Параметр питания	длительное, %	кратковременное		
		%	время, с	
Напряжение	+ 6 10	± 20	1,5	
(переменный ток)				
Частота	± 5	± 10	5	
Напряжение	+ 10	5	Циклические отклонения	
(постоянный ток)	± 10	10	Пульсации	

- 1.3.2 Преобразователи по климатическим воздействиям являются:
- теплоустойчивыми при температуре плюс 55 °C, холодоустойчивыми при температуре минус 40 °C, пределы допускаемой дополнительной погрешности на каждые 10 °C, вызванной изменением температуры окружающего воздуха в интервале рабочих температур от нормальной (20 ± 5) °C до любой в пределах от минус 40 до плюс 55 °C, не должны превышать 0,5 пределов допускаемой основной погрешности;
- работоспособными при температуре плюс 70 °C (не вызывают повреждений систем автоматизации, их элементов и устройств);
 - холодопрочными при температуре минус 50 °C.
- 1.3.3 Преобразователи являются влагоустойчивыми. Пределы допускаемой дополнительной погрешности при изменении относительной влажности от нормальной (30-80) % при температуре (20 \pm 2) °C до (80 \pm 3) % при температуре (40 \pm 2) °C, а также до (95 \pm 3) % при температуре (25 \pm 2) °C не превышают пределов допускаемой основной погрешности.
 - 1.3.4 Преобразователи являются вибропрочными при воздействии вибрации с частотами, указанными в таблице 7.

Таблица 7

Поддиапазон	Длительные испытания		Кратковремені	ные испытания
частот, Гц	Амплитуда, мм	Время, ч	Амплитуда, мм	Время, ч
2 – 8	1,4	450	2,5	9
8 – 16	0,7	220	1,3	4,5
16 – 31,5	0,35	110	0,7	2,2
31,5 - 63	0,2	55	0,35	1,1
63 – 80	0,12	25	0,2	0,5

- 1.3.5 Преобразователи являются виброустойчивыми при воздействии вибрации с частотами от 2 до 100 Гц: при частотах от 2 до 13,2 Гц с амплитудой перемещений ± 1 мм и при частотах от 13,2 до 100 Гц с ускорением 7 м/с 2 (0,7 g).
- 1.3.6 Преобразователи являются ударопрочными при воздействии ударов поочередно в каждом из трех взаимно перпендикулярных направлений с ускорением не менее 7 g и частотой от 40 до 80 ударов в минуту. Количество ударов не менее 1000. Удары равномерно распределены между испытаниями при различных положениях преобразователя.

Длительность действия ударного ускорения соответствует требованиям, указанным в таблице 8.

Таблица 8

Значение низшей резонансной частоты	Длительность действия ударного
преобразователя, Гц	ускорения, мс
До 60	18 ± 5
60 – 100	11 ± 4
100 - 200	6 ± 2
200 – 500	3 ± 1

Примечание — если технические характеристики оборудования не обеспечивают требуемой длительности действия ударного ускорения, то допускается проведение испытаний с длительностью действия ударного ускорения, определяемой по формуле J = 3000/f, где J - длительность ударного ускорения (мс), <math>f -низшая резонансная частота преобразователя, Γ ц.

- 1.3.7 Преобразователи являются удароустойчивыми при воздействии ударов поочередно в каждом из трех взаимно перпендикулярных направлений с ускорением 50 m/c^2 (5 g), длительностью от 10 до 15 мc, числом ударов в каждом направлении 20, частота следования ударов от 40 до 80 мин.
- 1.3.8 Преобразователи являются устойчивыми к воздействию соляного (морского) тумана.
 - 1.3.9 Преобразователи являются устойчивыми к нагреванию.
- 1.3.10 По защищенности от воздействия твердых тел преобразователи соответствуют степени защиты со стороны передней панели IP50 по ГОСТ 14254-96.
- 1.3.11 Преобразователи должны быть устойчивы к радиопомехам в соответствии с п. 10.6.3 ч.IV Пр. РС/ТН.

- 1.3.12 Преобразователи для обеспечения электромагнитной совместимости в части воздействия постоянного и переменного (50 Гц) магнитного поля соответствуют классу 2 оборудования в соответствии с требованиями пункта 2.2.1 части XI Правил классификации и постройки морских судов.
- 1.3.13 Преобразователи обладают устойчивостью к электромагнитным помехам (п. 10.6.4, ч.IV Пр. РС/ТН).
 - 1.3.14 Преобразователи обладают плесенеустойчивостью.

1.4 Дополнительные параметры и характеристики преобразователей, предназначенных для эксплуатации на АЭС (класс безопасности 4)

1.4.1 Преобразователи обеспечивают устойчивость к механическим воздействиям в соответствии с группой М38, сейсмостойкость 8 баллов по ГОСТ 17516.1-90.

Преобразователи относятся к I категории сейсмостойкости в соответствии с HП-031-01.

- 1.4.2 Преобразователи являются виброустойчивыми.
- 1.4.2.1 Преобразователи работоспособны при воздействии синусоидальной вибрации с параметрами, указанными в таблице 9 (сейсмическая нагрузка).

Таблица 9

Наименование параметра	Значение п	араметра дл	я диапазона	частот, Гц
паименование параметра	от 2 до 10	от 10 до 15	от 15 до 30	от 30 до 100
Шаг по частоте, Гц	1,0	1,0	2,0	10,0
Ускорение, M/c^2 (g)				
в горизонтальном направлении	5 (0,5)	3,5 (0,35)	1,2 (0,12)	1,2 (0,12)
в вертикальном направлении	3,5 (0,35)	2,5 (0,25)	1,2 (0,12)	1,2 (0,12)
Время выдержки на каждой частоте, с		60	0,0	

1.4.2.2 Преобразователи работоспособны при воздействии по трем взаимно-перпендикулярным осям синусоидальной вибрации в диапазоне частот от 0,5 до $100~\Gamma$ ц с ускорением $40~\text{m/c}^2$ (4 g) и временем воздействия не менее 80~c по каждой оси (эксплуатационная синусоидальная вибрация).

- 1.4.2.3 Пределы допускаемой дополнительной погрешности, вызванной воздействием вибрации, не превышают пределов допускаемой основной приведенной погрешности.
- 1.4.3 Преобразователи являются вибропрочными по трем взаимноперпендикулярным осям при воздействии синусоидальной вибрации с параметрами (эксплуатационная синусоидальная вибрация): диапазон частот от 0.5 до 100 Гц; ускорение 80 м/с² (8 g); время суммарного воздействия по трем осям не менее 6 ч.
- 1.4.4 Преобразователи являются ударопрочными по трем взаимно-перпендикулярным осям в шести направлениях при воздействии многократных ударов с параметрами (многократные удары, имитирующие транспортные нагрузки в составе оборудования АЭС): ускорение 140 м/c^2 (14g); длительность импульса ускорения от 2 до 20 мc; суммарное количество ударов по шести направлениям не менее 6000 ± 10 .

1.5 Устройство и принцип работы

- 1.5.1 Устройство и принцип работы преобразователей, имеющих исполнение с интерфейсами
- 1.5.1.1 Конструктивно преобразователи выполнены в корпусе для щитового монтажа (рисунок А.1 приложения А) и предназначены для установки на DIN-рейку шириной 35 мм или непосредственно на панель. Для установки преобразователи имеют комплект монтажных частей.
- 1.5.1.2 Преобразователь состоит из следующих основных узлов: корпуса, крышки корпуса, клеммников для подключения внешних цепей, блока из платы измерительной, платы интерфейсов и платы аналоговых выходов.
- 1.5.1.3 Блок крепится к крышке двумя саморезами и по направляющим для платы измерительной и платы аналоговых выходов устанавливается в корпус.

На плате измерительной расположены входные цепи, цепи преобразования и питания. На плате аналоговых выходов расположены цепи двух выходных каналов аналоговых сигналов. На плате интерфейсов расположены цифровые выходы основного и дополнительного интерфейсов RS485.

- 1.5.1.4 Клеммники для подключения внешних цепей, обеспечивают контакт с подводящими проводами. Каждый зажим обеспечивает подключение медных или алюминиевых проводов сечением от 0,08 до 2,5 мм².
- 1.5.1.5 Крышка корпуса крепится к корпусу при помощи четырех винтов (саморезов) M2,5.
- 1.5.1.6 Структурная схема преобразователей приведена на рисунке Б.1 приложения Б.

Измеряемый ток (напряжение) подается на делитель Д, представляющего собой делитель при измерении напряжения и шунт низкоомным сопротивлением при измерении тока.

Сигнал, пропорциональный току (напряжению) через низкочастотный фильтр НЧФ поступает на усилитель У, усиливающий сигнал до необходимого уровня работы преобразователя напряжение-частота ПНЧ. ПНЧ преобразовывает сигнал с усилителя У в частоту с постоянной длительностью импульса (временные параметры стабилизированы внутренним генератором ПНЧ с кварцевой стабилизацией). Импульсные сигналы через узел гальванической развязки УГР1 поступают на вход счетчика таймера микроконтроллера. Микроконтроллер СРU обрабатывает полученные сигналы и формирует ШИМ, соответствующим входному сигналу и через узлы гальванической развязки поступают на каналы аналогового выхода.

Принцип действия каналов аналогового выхода основан на дешифровке ШИМ, выделения постоянной составляющей и последующим преобразованием ее в ток унифицированного значения в соответствии с формой заказа.

Узел питания УП реализован на базе AC/DC-преобразователя, работающего как от переменного, так и от постоянного тока. Возможна замена при помощи дополнительной платы на другие значения напряжения питания. Дополнительная плата устанавливается на место AC/DC-преобразователя.

- 1.5.2 Устройство и принцип работы преобразователей, не имеющих исполнение с интерфейсами
- 1.5.2.1 Преобразователи измерительные Е34 представляют собой одноили двухканальные электронные изделия, преобразующие измеряемые сигналы постоянного тока и напряжения в унифицированные сигналы постоянного тока с трехуровневой гальванической развязкой, т.е. с изолированными друг от друга входными, выходными цепями и цепями питания.

Для передачи измеряемого сигнала на выходные каналы в преобразователях применен метод широтно-импульсной модуляции с оптическим способом передачи.

1.5.2.2 Структурная схема преобразователей приведена на рисунке Б.2 приложения Б.

Измеряемый ток (напряжение) подается на зажимы входной цепи тока (напряжения) ВЦТ (ВЦН), представляющего собой резистивный шунт низкоомным сопротивлением (делитель напряжения).

Сигнал, пропорциональный току (напряжению) в измерительной цепи, преобразуется широтно-импульсным модулятором (ШИМ) в периодическую последовательность прямоугольных импульсов со скважностью, линейно зависящий от величины входного сигнала.

Транзисторные оптопары, составляющие основу узлов гальванической развязки УГР1, УГР2 осуществляют передачу последовательности импульсов на выходные каналы преобразователя с требуемой точностью.

Напряжения импульсной последовательности усредняются фильтрами низких частот ФНЧ1, ФНЧ2 и складываются с напряжениями смещения формирователей начального тока ФНТ1, ФНТ2 на входах управляемых источников тока УИТ1, УИТ2 соответствующих каналов, позволяя устанавливать начальные значения источников тока в необходимом диапазоне. Токи УИТ1, УИТ2 являются выходными для измерительного преобразователя и калибруются на номинальное значение входного тока (напряжения).

Питание входного каскада преобразователя осуществляется импульсным источником питания ИПН, преобразующим напряжение однофазной сети 220 В, 50 Гц в необходимые напряжения постоянного тока ± 12 В. Питание выходных каналов тока осуществляется от соответствующих источников питающих напряжений ИПН1, ИПН2 гальванически изолированных друг от друга и источника питания входного каскада ИПН.

1.6 Маркировка

- 1.6.1 На крышке корпуса имеется этикетка с указанием всех необходимых параметров преобразователя и контактов подключения внешних цепей.
- 1.6.2 Преобразователи, прошедшие приемо-сдаточные испытания предприятия-изготовителя и первичную поверку, имеют клеймо отдела технического контроля и поверительное клеймо.
- 1.6.3 На транспортной таре нанесены манипуляционные знаки "Верх", "Хрупкое. Осторожно", "Беречь от влаги" по ГОСТ 14192-96.

2 СРЕДСТВА ИЗМЕРЕНИЙ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТИ

- 2.1 Для контроля, регулирования (настройки), выполнения работ по техническому обслуживанию и текущему ремонту должны применяться следующие технические средства:
- установка для проверки электрической прочности изоляции с испытательным напряжением от 0,1 до 3,0 кВ синусоидальной формы, частотой 50 Γ ц, мощностью не менее 0,25 кВ·А, погрешностью испытательного напряжения не более ± 10 %;
- мегаомметр с верхним пределом измерения не менее 100 MOм, номинальным напряжением 500 B, основной погрешностью не более \pm 10 %;
- установка для поверки приборов на постоянном токе с диапазоном напряжения от 0 до 1000 В и диапазоном токов от 0 до 20 мА; от -5 до + 5 мА;
- вольтметр с диапазоном измерения напряжения постоянного тока от 0 до 1000 В и погрешностью не более ± 0.05 %;
- амперметр с диапазоном измерения постоянного тока от 0 до 20 мA и погрешностью не более $\pm 0,05$ %;
- миллиамперметр с диапазоном измерения постоянного тока от 0 до 20 мА и погрешностью не более $\pm 0,05\%$.

Примечания

- 1 Испытательное оборудование должно быть аттестовано, средства измерений поверены и иметь документацию, подтверждающую ее готовность.
- 2 Допускается использовать другие средства измерений для задания входных сигналов, если погрешность задания не превышает 1/5 предела основной погрешности прибора.
- 3 Допускается использовать средства измерений с погрешностью задания сигналов, не превышающей 1/3 предела основной погрешности преобразователя, с введением контрольного допуска, равного 0,8 от предела основной погрешности преобразователя.
- 4 При эксплуатации преобразователей выполнение работ по техническому обслуживанию не требуется.

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Меры безопасности

- 3.1.1 К работам по обслуживанию и эксплуатации преобразователей допускаются специально подготовленные работники, прошедшие проверку знаний в объеме, обязательном для данной работы, и имеющие группу по электробезопасности, предусмотренную действующими правилами охраны труда при эксплуатации электроустановок (напряжением до 1000 В) и изучившие настоящее руководство по эксплуатации.
- 3.1.2 При работе с преобразователями необходимо пользоваться только исправным инструментом и оборудованием.
 - 3.1.3 Запрещается:
- эксплуатировать преобразователи в режимах, отличающихся от указанных в настоящем руководстве;
- эксплуатировать преобразователи при обрывах проводов внешних соединений;
- производить внешние соединения, не сняв все напряжения, подаваемые на преобразователь.
- 3.1.4 При подключении питающего напряжения постоянного тока требуется соблюдать полярность подводящих проводов.
- 3.1.5 В случае возникновения аварийных условий и режимов работы преобразователь необходимо немедленно отключить.

3.2 Подготовка к работе

3.2.1 Преобразователь распаковать и убедиться в отсутствии механических повреждений, в наличии клейма поверителя.

Перед началом работы необходимо выдержать преобразователь в нормальных условиях не менее 4 ч. Ознакомиться с паспортом на преобразователь и проверить комплектность.

3.2.2 Приступая к работе с преобразователем, необходимо внимательно изучить все разделы настоящего Руководства.

- 3.2.3 Преобразователь установить на DIN-рейку или непосредственно на панель. Разметка места крепления преобразователя должна проводиться в соответствии с установочными размерами, приведенными в приложении А.
- 3.2.4 Подключить внешние цепи в соответствии с назначением контактов соединительных разъемов в клеммы «под винт», одножильными проводами сечением до 4 мm^2 , многожильными до 2.5 мm^2 .

Внешние соединения выполнить в соответствии со схемами подключения, приведенными в приложении В.

- 3.2.5 Перед включением преобразователя в измерительную цепь необходимо проверить соответствие параметров измеряемой цепи входным параметрам преобразователя.
- 3.2.6 Все работы по монтажу и эксплуатации должны проводиться с соблюдением действующих правил, обеспечивающих безопасное обслуживание и эксплуатацию электроустановок.
 - 3.3 Порядок работы
- 3.3.1 Приступая к работе с преобразователем, необходимо внимательно изучить все разделы настоящего руководства.
 - 3.3.2 Работа с интерфейсами
- 3.3.2.1 Работа преобразователей по интерфейсу RS485 обуславливается аппаратными и программными средствами, применяемыми потребителем.
- 3.3.2.2 При обмене информацией преобразователи являются ведомыми устройствами (SLAVE). В качестве ведущего устройства (MASTER) выступает промышленный контроллер, компьютер или аналогичное устройство, управляющее обменом данными в линии. На ведущем устройстве должны быть установлены параметры линии интерфейса в соответствии с протоколом обмена.

Преобразователи обеспечивают работу в линии интерфейса по протоколу Modbus RTU.

Протокол обмена данными приведен в приложении Г.

3.3.2.3 Связь с компьютером может осуществляться либо через специальную плату, либо через последовательный порт RS232 с применением дополни-

тельного устройства – преобразователя уровней напряжения сигналов последовательного порта RS232 в уровни напряжения сигналов интерфейса RS485.

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1.Транспортирование преобразователей должно осуществляться закрытым железнодорожным или автомобильным транспортом по ГОСТ Р 52931-2008.

При транспортировании самолетом преобразователи должны быть размещены в отапливаемых герметизированных отсеках.

- 4.2 Железнодорожные вагоны, контейнеры, трюмы судов, кузова автомобилей, используемые для перевозки преобразователей практически не должны иметь следов цемента, угля, химикатов и т.п.
- 4.3 Транспортирование преобразователей должно производиться в соответствии с действующими на данном виде транспорта правилами, утвержденными в установленном порядке.
- 4.4 Отправки могут быть мелкими или малотоннажными в зависимости от количества преобразователей, отгружаемых в один адрес.
- 4.5 Условия транспортирования преобразователей должны соответствовать условиям хранения 5 (ОЖ4) по ГОСТ 15150-69.
- 4.6 При необходимости особых условий транспортирования это должно оговариваться в договоре на поставку.
- 4.7 Преобразователи до введения в эксплуатацию следует хранить на складах в транспортной таре предприятия изготовителя при температуре окружающего воздуха от плюс 5 до плюс 40 °C и относительной влажности 80 % при температуре плюс 25 °C.

Хранить преобразователи в индивидуальной упаковке следует при температуре окружающего воздуха от плюс 10 до плюс 35 °C и относительной влажности 80 % при температуре плюс 25 °C.

Хранить преобразователи без упаковки следует при температуре окружающего воздуха от плюс 10 до плюс 35 °C и относительной влажности воздуха не более 80 % при температуре плюс 25 °C.

4.8 В помещении для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не

должно превышать содержание коррозионноактивных агентов для атмосферы типа 1 по ГОСТ 15150-69.

4.9 Помещения для хранения должны быть оборудованы автоматическими установками пожарной сигнализации и средствами пожаротушения.

5 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 5.1 Гарантийный срок эксплуатации 24 месяца со дня ввода преобразователя в эксплуатацию. Гарантийный срок хранения 12 месяцев с момента изготовления преобразователя.
- 5.2 Изготовитель гарантирует соответствие преобразователя требованиям технических условий ТУ 25-7504.216-2011 при соблюдении следующих правил:
- соответствие условий эксплуатации, хранения, транспортирования изложенным в настоящем руководстве;
- обслуживание преобразователя должно производиться в соответствии с требованиями настоящего руководства персоналом, прошедшим специальное обучение.
 - 5.3 Потребитель лишается права на гарантийный ремонт:
 - при несоблюдении потребителем требований 6.2;
- при отсутствии или нарушении сохранности гарантийных этикеток (пломб) предприятия-изготовителя.

6 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

- 6.1 При отказе в работе или неисправности преобразователя в период действия гарантийного срока потребителем должен быть составлен акт о необходимости ремонта и отправки прибора изготовителю.
- 6.2 Преобразователи, подвергшиеся вскрытию, имеющие наружные повреждения, а также применявшиеся в условиях, не соответствующих требованиям ТУ 25-7504.216-2011, не рекламируются.
- 6.3 Единичные отказы комплектующих изделий элементной базы не являются причиной для предъявления штрафных санкций.

7 УТИЛИЗАЦИЯ

7.1 Преобразователи не представляют опасности для жизни, здоровья людей и окружающей среды после окончания срока эксплуатации и подлежат утилизации по технологии, принятой на предприятии, эксплуатирующем данное изделие.

Приложение А (обязательное) Общий вид, габаритные и установочные размеры преобразователя

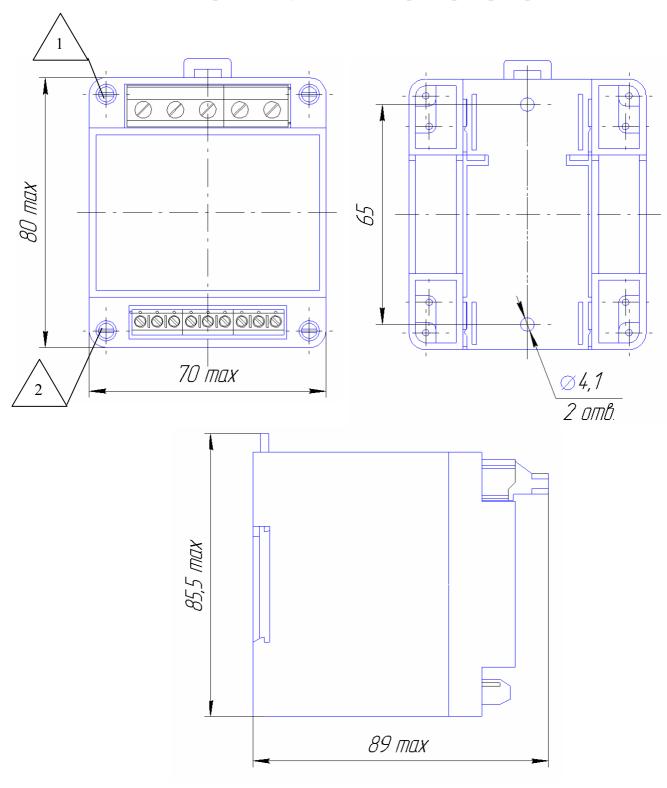


Рисунок А.1 – Габаритные и установочные размеры преобразователя Е856ЭЛ

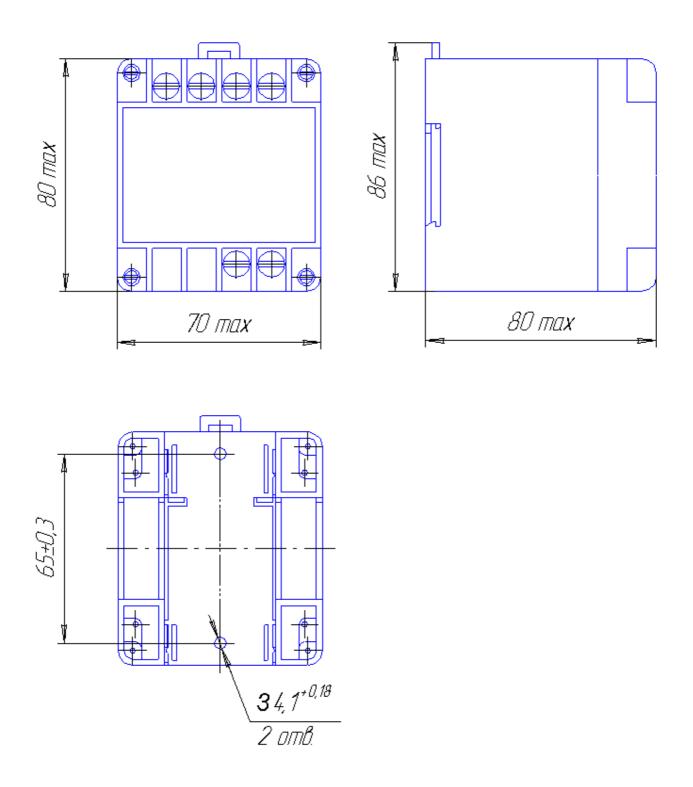
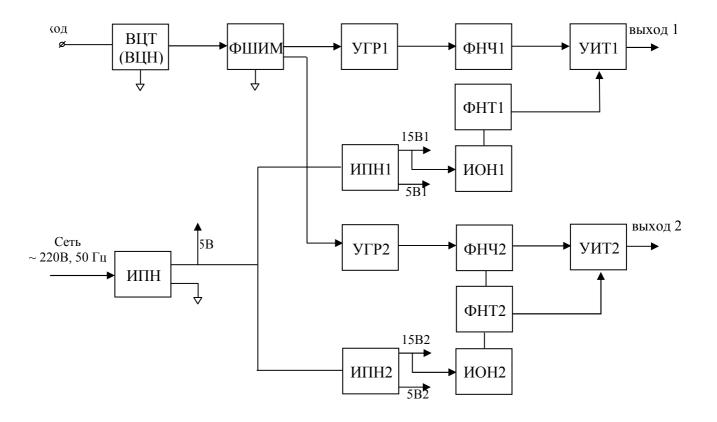



Рисунок А.2 – Габаритные и установочные размеры преобразователей Е856ЭЛ, не имеющих исполнения с интерфейсами

Рисунок Б.1 – Структурная схема преобразователя Е856ЭЛ, имеющих исполнения с интерфейсами

PB0...PB7, PC6, PC7, PD0...PD5 – порта микроконтроллера

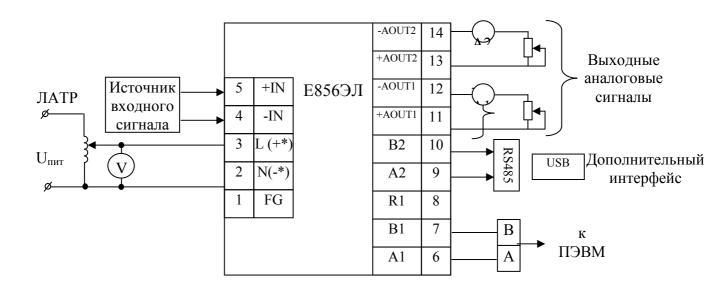

```
ВЦТ – входная цепь тока;
ВЦН – входная цепь напряжения;
ФШИМ – формирователь широтно-импульсный;
УГР1 – узел гальванической развязки канала 1;
УГР2 – узел гальванической развязки канала 2;
ФНЧ1 – фильтр низких частот канала 1;
ФНЧ2 – фильтр низких частот канала 2;
УИТ1 – управляемый источник тока канала 1;
УИТ2 – управляемый источник тока канала 2;
ФНТ1 – формирователь начального тока канала 1;
ФНТ2 – формирователь начального тока канала 2;
ИПН – источник питающих напряжений входного каскада;
ИПН1 – источник питающих напряжений канала 1;
ИПН2 – источник питающих напряжений канала 2;
ИОН1 – источник опорного напряжения канала 1;
ИОН2 – источник опорного напряжения канала 2.
Для одноканальных преобразователей в схеме отсутствуют ИПН2, СГР2, ФНЧ2, ФНТ2, УИТ2.
```

Рисунок Б.2 - Структурная схема преобразователей Е856ЭЛ, не имеющих исполнения с интерфейсами

Приложение В

(обязательное)

Схема внешних подключений преобразователя

А1, А2 – образцовые миллиамперметры;

V – образцовый вольтметр;

Рисунок В.1 – Схема подключения преобразователя Е856ЭЛ, имеющего исполнения с интерфейсами

^{* -} обозначение контактов для подключения источников питания постоянного тока (12BH, 24BH)

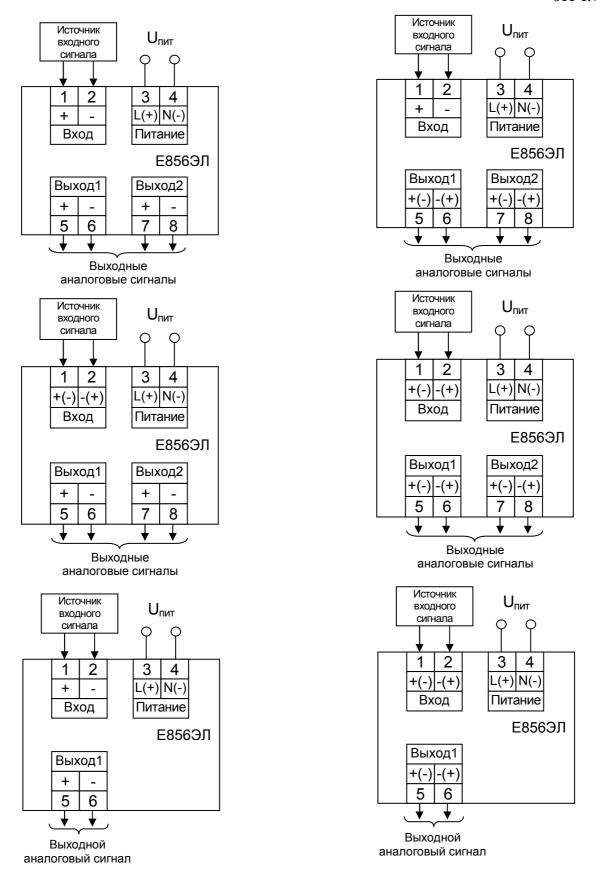


Рисунок В.2 – Схемы подключения преобразователя Е856ЭЛ, не имеющего исполнения с интерфейсами

Приложение Г (обязательное)

I. Протокол обмена данными по основному интерфейсу Modbus RTU

В данном документе описывается работа преобразователя в составе полевой сети с протоколом Modbus RTU в качестве ведомого устройства.

Характеристики канала связи

Канал связи используется для связи преобразователя в качестве ведомого устройства полевой сети Modbus RTU и имеет следующие характеристики:

- электрический интерфейс канала RS-485;
- тип канала асинхронный;
- скорость передачи данных: 4.8 кбод, 9.6 кбод, 19.2 кбод, 38.4 кбод, 57.6 кбод, 115.2 кбод устанавливается пользователем;
- длина линии связи сети до 1,2 км в зависимости от установленной скорости передачи данных;
 - тип линий связи витая пара;
 - число преобразователей на канале связи без повторителей 32;
- Формат передаваемого байта информации: 1 старт-бит + 8 бит данных + паритет (без паритета, четный паритет, нечетный паритет устанавливается пользователем) + стоп-биты (1 или 2 устанавливается пользователем);
 - Допустимый адрес: 1...247;

Все информационные и временные характеристики реализованного программой ... протокола соответствуют характеристикам протокола Modbus RTU.

Ведущее (master) устройство запрашивает информацию, формируя запросы для ведомого (slave) устройства.

Ведомое устройство отвечает ведущему устройству ответом, формат которого определяется протоколом, в случае если адрес в принятом сообщении совпал с адресом ведомого устройства.

Таблица Г.1 Содержимое сообщения в канале полевой сети

Адрес	Функция	Данные	CRC - Циклическая контрольная сумма
8 бит	8 бит	N*8 бит	16 бит

Адрес – сетевой адрес прибора, 1...247. Адрес 0 предназначен для широковещательных сообщений, ответ на которые прибор не формирует.

Функция – код функции в соответствии с перечнем поддерживаемых функций;

Данные – данные в соответствии с описанием функции;

CRC – циклическая контрольная сумма сообщения, формируемая в соответствии со стандартом Modbus RTU (CRC16).

Таблица Г.2 Перечень поддерживаемых функций

Код функции	Функция
0x03, 0x04	Чтение регистров
0x10	Запись регистров
0x11	Чтение идентификатора устройства

Команды чтения из устройства

Запрос

Таблица Г.3

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
Функция	0х03 или 0х04, 1 байт
Старшая часть начального адреса	Старший байт начального адреса облас-
	ти регистров для чтения
Младшая часть начального адреса	Младший байт начального адреса облас-
	ти регистров для чтения
Старшая часть числа регистров	Старший байт числа регистров для чте-
	ния
Младшая часть числа регистров	Младший байт числа регистров для чте-
	ния
CRC - циклическая контрольная сумма	

Ответ

Таблица Г.4

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
Функция	0х03 или 0х04, 1 байт
Счетчик байт	Число байт в информационной части от-
	вета (т.е число читаемых регистров * 2)
Старшая часть первого регистра	Содержимого старшего байта первого
	регистра для чтения.
Младшая часть первого регистра	Содержимого младшего байта первого
	регистра для чтения.
•••	•••
Старшая часть последнего регистра	Содержимого старшего байта последне-
	го регистра для чтения.
Младшая часть последнего регистра	Содержимого младшего байта последне-
	го регистра для чтения.
CRC - циклическая контрольная сумма	

Команды записи в устройство

Запрос

Таблица Г.5

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
Функция	0х10, 1 байт
Старшая часть начального адреса	Старший байт начального адреса облас-
	ти регистров для записи
Младшая часть начального адреса	Младший байт начального адреса облас-
	ти регистров для записи
Старшая часть числа регистров	Старший байт числа регистров для запи-
	си
Младшая часть числа регистров	Младший байт числа регистров для за-
	писи
Число байт	Число регистров для записи * 2
Старшая часть первого регистра	Содержимого старшего байта первого
	регистра для записи.
Младшая часть первого регистра	Содержимого младшего байта первого
	регистра для записи.
•••	•••
Старшая часть последнего регистра	Содержимого старшего байта последне-
	го регистра для записи.
Младшая часть последнего регистра	Содержимого младшего байта последне-
_	го регистра для записи.
CRC - циклическая контрольная сумма	

Ответ

Таблица Г.6

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
Функция	0х10, 1 байт
Старшая часть начального адреса	Старший байт начального адреса облас-
	ти регистров для записи
Младшая часть начального адреса	Младший байт начального адреса облас-
	ти регистров для записи
Старшая часть числа регистров	Старший байт числа регистров для запи-
	си
Младшая часть числа регистров	Младший байт числа регистров для за-
	писи
CRC - циклическая контрольная сумма	

Команда чтения идентификатора устройства

Запрос

Таблица Г.7

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
Функция	0x11
CRC - циклическая контрольная сумма	

Ответ

Таблица Г.8

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
Функция	0x11
Счетчик байт	0x04
Идентификатор прибора	0x04
Тип входного сигнала	0-11
Тип выходного сигнала1	0-3
Тип выходного сигнала2	0-3
CRC - циклическая контрольная сумма	

Содержимое байтов данных в ответе специфично для каждого типа устройств.

Формат ответа для преобразователя Е856ЭЛ показан выше

Сообщение об ошибке

Таблица Г.9

Имя поля	Содержимое
Адрес	1 байт, адрес ведомого устройства
	Код функции в запросе с установленной в старшем бите единицей
Код ошибки	1 байт
CRC - циклическая контрольная сумма	

Коды ошибок

Таблица Г.10

Код	Расшифровка		
1	Недопустимая функция		
2	Недопустимый адрес данных		
3	Недопустимая величина данных		

II. Протокол обмена данными по дополнительному интерфейсу Modbus RTU

В данном документе описывается работа прибора по дополнительному интерфейсу с протоколом Modbus RTU в качестве **ведущего** устройства.

Дополнительный интерфейс используется для нестандартной циклической передачи измеряемых и\или вычисляемых параметров для отображения на внешних индикаторах (например, Табло или МИ).

Параметры работы дополнительного интерфейса задаются от ПК по основному интерфейсу. К таким параметрам относятся: *'Системные параметры для передачи по дополнительному интерфейсу'* и *'Параметры настройки передачи по дополнительному интерфейсу'* Таблицы Г.2.

Прибор (как ведущее устройство) периодически отправляет сообщение(пакет) во внешнее (ведомое) устройство, ответ не анализируется.

Содержимое сообщения, выводимого по дополнительному интерфейсу, зависит от *выбранного прибора* и *варианта пакета* для вывода по дополнительному интерфейсу (для МИ еще и от номеров параметров, выводимых на соответствующие цифровые индикаторы ЦИ1, ЦИ2, ЦИ3, а также коэффициентов трансформации и разрешений по току и напряжению).

Описание пакета для Табло

Содержимое команды записи в Табло соответствует Таблице Г.5.

Возможны два варианта содержимого сообщения:

- 1) для данных в формате вещественного числа по Таблице Γ .6 (варианты пакета 0...5),
- 2) для данных в формате вещественного числа по Таблице $\Gamma.8$ (варианты пакета 6...11) .

	Адрес	Функ- ция	Адрес на- чального регистра	Количе- ство ре- гистров	Счет- чик байт	Данные		CRC - Цик- лическая контроль- ная сумма		
	8 бит	8 бит	16 бит	16 бит	8 бит	32бита		16 бит		
1)		0x10	0x100b	0x0002	0x04	В3	B2	B1	В0	
2)		0x10	0x1003	0x0002	0x04	B1	В0	В3	B2	

Адрес – сетевой адрес, 1...247.

Функция -0x10, (код функции записи в устройство);

Адрес начального регистра - 0х100b или 0х1003;

Количество регистров -2;

Счетчик байт – 4 (число байтов данных);

Данные — 4 байта данных в соответствии с форматом представления вещественного числа по Таблица Γ .8 или по Таблице Γ .6, (здесь B3, B2, B1, B0 обозначения для байт3, байт2, байт1, байт0 соответственно);

CRC – циклическая контрольная сумма сообщения, формируемая в соответствии со стандартом Modbus RTU (CRC16).

Описание пакета для МИ

Содержимое сообщения для МИ соответствует Таблице Г.11.

Таблица Г.11 Содержимое пакета для вывода в МИ.

Адрес	Функция	Счетчик байт		CRC - Цикличе- ская контрольная сумма
8 бит	8 бит 0x03	8 бит 0х48	36*16 бит	16 бит

Адрес – сетевой адрес МИ, 1...247,

 Φ ункция — 0x03,

Счетчик байт -0x48 (число байтов данных),

Данные - 72 байта (по 2 байта данных для каждого из 36 параметров МИ (см. Таблицу Γ .14)),

CRC – циклическая контрольная сумма сообщения, формируемая в соответствии со стандартом Modbus RTU (CRC16).

МИ используется для отображения значений трех параметров преобразователя: входного напряжения или входного тока и выходных токов обоих каналов. В зависимости от выбранного варианта пакета для вывода на МИ данные помещаются в позиции соответствующего параметра МИ, неиспользуемые параметры задаются равными нулю.

Таблица Г.12

Параметр преобразователя	Вариант пакета (для МИ)						
	00)	01	1	04	ļ	
	МИ1	20.1	МИ1	20.2	MI	N	
	(ЭНМ	И1.2)	(ЭНМ	И2.х)	универса	альный	
	Параметр	Номер в	Параметр	Номер в	Номер в па	кете (За-	
	МИ	пакете	МИ	пакете	дается с	т ПК)	
Входное напряжение	I	26	Ua	0	(См.0х003	1в табл.2)	
Входной ток					''-		
Выходной ток1	P	6	Ub	1	(См. 0х	0032 в	
					табл	.2)	
Выходной ток2	Q	10	Uc	2	(См. 0х0033	3 в табл.2)	
	KI=1000	32	KI=1000	32	KI=1	32	
	KU=1	33	KU=1	33	KU=1	33	
	resI=1	34	resI=1	34	resI=1000	34	
	resU=1	35	resU=1	35	resU=1	35	
Примечание. Предварит	ельно следу	ует задать	от ПК знач	ения коэф	фициентов	транс-	

Примечание. Предварительно следует задать от ПК значения коэффициентов трансформации и разрешений по току и напряжению.

Значения данных формируются в соответствии с конфигурированием МИ и формулами, которые используются в МИ для вычисления значений параметров, получаемых от приборов при приеме данных типа unsigned short, signed short (см. Таблицу Γ .13) .

Таблица Г.13

Параметр	Формулы*
Ток(фазные и средний)	Зн=ПЗн*0.000001*Разрешение по току *КІ
Напряжение(фазные, среднее	Зн=ПЗн*0.001*Разрешение по напряжению
фазное, линейные, среднее ли-	*KU
нейное	
Мощность(активная, реактивная,	Зн=ПЗн*0.00001*(Разрешение по току *KI)*
полная, фазные, суммарные)	(Разрешение по напряжению *KU)
cosφ	Зн=ПЗн/1000
* Здесь Зн – значение параметра, 1	ПЗн – получаемое от прибора значение, по ко-
торому вычисляется Зн.	

При преобразовании в реальные значения в МИ учитываются:

- масштаб(1:1000 для токов, частоты и косинусов; 1:100 для напряжений; 1:10 для мощностей);
 - разрешение по току и напряжению;
 - коэффициенты трансформации.

Таблица Г.14 Список параметров МИ

Таолица	Г.14 Список параг	метров МИ		
$\mathcal{N}_{\underline{0}}$	Обозначение па-		Тип регистра	
пар.	раметра в МИ			
0	Ua			
1	Ub	Фазные напряжения	unsigned short	
2	Uc			
3	Ia			
4	Ib	Фазные токи	unsigned short	
5	Ic			
6	P	Суммарная активная мощность	signed short	
7	Pa			
8	Pb	Активная мощность	signed short	
9	Pc	фазы нагрузки		
10	Q	Суммарная реактивная мощ-	signed short	
		ность		
11	Qa			
12	Qb	Реактивная мощность фазы на-	signed short	
13	Qc	грузки		
14	S	Суммарная полная мощность	unsigned short	
15	Sa			
16	Sb	Полная мощность фазы на-	unsigned short	
17	Sc	грузки		
18	F	Частота	unsigned short	
19	Uab			
20	Ubc	Линейные напряжения	unsigned short	
21	Uac			
22	TC			
23	(пусто)			
24	(пусто)			
25	Ur	Среднее фазное напряжение	unsigned short	
26	Ir	Средний ток	unsigned short	
27	Uл	Среднее линейное напряжение	unsigned short	
28	cosφA			
29	cosφB	Коэффициент мощности по	signed short	
30	cosφC	фазе		
31	cosφ	Коэффициент мощности об-	signed short	
		щий		
32	KI	Коэффициент трансформации	unsigned short	
		по току		
33	KU	Коэффициент трансформации unsigned short		
2.1		по напряжению		
34	resI	Разрешение по току	unsigned short	
35	resU	Разрешение по напряжению unsigned short		

III. Адресное пространство (по протоколу Modbus RTU) Таблица 1. Регистры только для чтения (использовать функцию 04)

Адрес (номер регистра)	Назначение	Формат	Диапазон значений	Реальные значения параметров
		Измеренные значения		
0x0000,0x0001	Измеренное значение в импуль- сах (за выбранный промежуток времени)	формат представления числа unsigned long (см. табл. 5)	unsigned long	unsigned long
0x0002,0x0003	Текущее значение частоты	Первый формат представления вещественного числа (см. табл. 3)	float	float
0x0004,0x0005	Текущее значение частоты	Второй формат представления вещественного числа (см. табл. 4)	float	float
0x0006,0x0007	Текущее значение напряжения	Первый формат представления вещественного числа (см. табл. 3)	float	float
0x0008,0x0009	Текущее значение напряжения	Второй формат представления вещественного числа (см. табл. 4)	float	float
0x000a,0x000b	Текущее значение тока	Первый формат представления вещественного числа (см. табл. 3)	float	float
0x000c,0x000d	Текущее значение тока	Второй формат представления вещественного числа (см. табл. 4)	float	float
0x000e	Текущее значение ШИМ1	unsigned short	unsigned short	
0x000f	Текущее значение ШИМ2	unsigned short	unsigned short	
0x0010	Диапазон ШИМ	unsigned short	unsigned short	
0x0015,0x0016	Текущее значение выходного то- ка1	Второй формат представления вещественного числа (см. табл. 6)	float	float
0x0017,0x0018		Второй формат представления вещественного числа (см. табл. 6)	float	float
0x0019,0x001a		Второй формат представления вещественного	float	float

Адрес (номер	Назначение	Формат	Диапазон	Реальные значения
регистра)			значений	параметров
0x001c,0x001d	Архив текущих измеренных зна-	Формат представления числа unsigned long	unsigned long	Используются для калиб-
	чений в импульсах за выбранный	(см. табл. 5)		ровки нижнего и верхнего
0x002a,0x002b	интервал подсчета частот			знгачений частот
	(см.0х0009 в Таблице2)			
	(последние 8 измерений)			
0x002c,0x002d	Текущее значение по заказанному	Второй формат представления вещественного	float	float
	диапазону	числа (см. табл. 4)		
0x002e,0x002f	Текущее значение по заказанному	Первый формат представления вещественного	float	float
	диапазону	числа (см. табл. 3)		
		Информационные регистры		
0x2000x209	Имя	Символы в кодировке ASCII(Windows)	char[20]	'Е856ЭЛ '
0x20a0x213	Версия ПО	_''_	char[20]	'ver.3.06.9 '

Таблица 2 Регистры для записи/чтения (использовать функцию 03 для чтения, функцию 0х10 для записи)

Адрес (номер регистра)	Назначение	Формат	Диапазон значени	й Реальные значения параметров
Системные п	араметры для приема\п	передачи по основному UART		
0x800	Сетевой адрес	unsigned short	1247	1247
0x801	Номер скорости	unsigned short		1 — 4.8 Кбод 2 — 9.6 Кбод! 3 — 19.2 Кбод 4 — 38.4 Кбод 5 — 57.6 Кбод 6 — 115.2 Кбод
0x802	Паритет	unsigned short		0 – без паритета 1 – четный паритет 2 – нечетный паритет
0x803	Число стоп-бит	unsigned short	01	0 – 1 стоп-бит; 1 – 2 стоп-бита

	Системные параметры для передачи по дополнительному UART					
0x804	Сетевой адрес	unsigned short	1247	1247		
0x805	Номер скорости	unsigned short	16	См. 0х801		
0x806	Паритет	unsigned short	02	См.0х802		
0x807	Число стоп-бит	unsigned short	01	См. 0х803		
0x808	Пауза между пакетами(в мс)	unsigned short	50010000	0,510c		
0x000a	Признак 'запрещение вывода по дополнительному Uart'	unsigned short	0\1	0 – запрещен 1 – разрешен		
Параметры	настройки преобразователя					
0x0000	Выбор типа преобразователя	unsigned short	0/1	0-напряжения 1-тока		
0x0001	Диапазон измерения входного сигнала	unsigned short	011	0750+75mB 1 - 075mB 2 - 060B 3 - 0100B 4 - 0150B 5 - 0250B 6 - 0500B 7 - 01000B 8 - 05mA 9 - 020mA 10 - 420mA 11505mA		
0x0002	Диапазон изменения выходного сигнала1	unsigned short	03	0- 05mA 1- 020mA 2- 420mA 3505mA		
0x0003	Диапазон изменения выходного сигнала2	unsigned short	03	0- 05мА 1- 020мА 2- 420мА 3505мА		

0x0004	Диапазон изменения номинального входного тока	unsigned short		Только для диапазонов измерения входного сигнала 0-75мВ и -7575мВ
0x001c,0x001d	Минимальное значение заказанного диапазона	Второй формат представления вещественного числа см. табл. 6	-9999.0 9999.0	
0x001e,0x001f	Максимальное значение заказанного диапазона	Второй формат представления вещественного числа см. табл. 6	-9999.0 9999.0	
0x0006	Режим работы	unsigned short	08	0 — рабочий режим 1 — калибровка 0% ШИМ1 2 — калибровка 100% ШИМ1 3 — калибровка 0% ШИМ2 4 — калибровка 100% ШИМ2 5 — 0.125 от диапазона- ШИМ 6 — 0.25 от диапазонаШИМ 7 — 0.5 от диапазонаШИМ 8 — 0.75 от диапазонаШИМ
0x0007	Команда 'записать значения 45Алибровок вЕргот' (обеих скважностей по обоим каналам)	unsigned short	0х55 – записать	
0x0008	Вариант подсчета частот	unsigned short	02	0 – грубо(без усреднений) 1 – с усреднением 2 – со сглаживанием шумов
0x0009	Вариант интервала подсчета частот	unsigned short	06	0 – 100mc 1 – 200mc 2 – 250mc 3 – 500mc 4 – 20mc 5 – 40mc 6 – 50mc

0x000b	Количество игнорируемых младших битов подсчитанной частоты (для варианта2 подсчета 'со сглаживанием шумов')	unsigned short	010	Только Для варианта 2 подсчета частот!!!
		Параметры настройки ШИМ		
0x000c, x000d	Нижнее значение диапазона частот	unsigned long (см.табл.5)	unsigned long	>= 100000 (000186A0h) (Не меньше 100кГц)
0x000e,0x000f	Верхнее значение диапазона частот	unsigned long (см.табл.5)	unsigned long	<= 1000000 (000F4240h) (Не больше 1МГц)
1-й выход ШИМ			-	
0x0010	Нижняя скважность ШИМ	unsigned short	3601560	!Калиброванное зна- чение
0x0011	Минимальная нижняя скважность	unsigned short	360-40360+40	360 (по умолчанию)
0x0012	Максимальная нижняя скваж- ность	unsigned short	1560-401560+40	1560 (по умолчанию)
0x0013	Верхняя скважность ШИМ	unsigned short	2360 3560	!Калиброванное зна- чение
0x0014	Минимальная верхняя скваж- ность	unsigned short	2360-402360+40	2360 (по умолчанию)
0x0015	Максимальная верхняя скваж- ность	unsigned short	3560-403560+40	3560 (по умолчанию)
2-й выход ШИМ			-	-
0x0016	Нижняя скважность ШИМ	unsigned short	3601560	!Калиброванное зна- чение
0x0017	Минимальная нижняя скважность	unsigned short	360-40360+40	360
0x0018	Максимальная нижняя скваж- ность	unsigned short	1560-401560+40	1560

0x0019	Верхняя скважность ШИМ	unsigned short		2360 3560		!Калиброванное зна- чение
0x001A	Минимальная верхняя скваж- ность	unsigned short		2360-402360+40	0	2360
0x001B	Максимальная верхняя скваж- ность	unsigned short		3560-403560+40	0	3560
	Параметры н	 	полнительно	OMY UART		
0x0030	Выбор прибора и вариант пакета для вывода по дополнительному UART	unsigned short ст.байт - Выбор прибора мл.байт - вариант пакета выбранного прибора	Мл.байт: 011(для й 04(для М	,	0,6 — 1,7 — 2,8 — 1 3,9 — 1 4,10 — заказа 5,11 — %; Для М 0 — па МИ12 (P,G,J 1 — па МИ12 (Ua,U 2,3 — 4 — па го МІ	акет на 20.1(ЭНМИ1.2) I); кет на 20.2(ЭНМИ2.х) Jb,Uc); резерв; акет для универсально-И
0x0031	Выбор номера для индикации входного значения	unsigned short	0-31			араметра,.выводимого на ЦИ1 (для пакета4 МИ)
0x0032	Выбор номера для индикации значения выходного тока1	unsigned short	0-31		№па	араметра, выводимого на ЦИ2 (для пакета4 МИ)

0x0033	Выбор номера для индикации значения выходного тока2	unsigned short	0-31	№параметра,.выводимого на ЦИЗ (для пакета4 МИ)
0x0034	Коэффициент трансформации тока	unsigned short	unsigned short	1 (по умолчанию)
0x0035	Коэффициент трансформации напряжения	unsigned short	unsigned short	1 (по умолчанию)
0x0036	Разрешение по току	unsigned short	unsigned short	1000 (по умолчанию)
0x0037	Разрешение по напряжению	unsigned short	unsigned short	1 (по умолчанию)

Таблица 3. Первый Формат представления вещественного числа.

Регистр с младшим адресом		Регистр со старшим адресом	
Мл. байт мантиссы	Средний байт мантиссы	Ст. байт мантиссы	Ст. байт (порядок+знак)
(байт 0)	(байт 1)	(байт 2)	(байт 3)

Таблица 4. Второй Формат представления вещественного числа.

Регистр с младшим адресом		Регистр со старшим адресом	
Ст. байт (порядок+знак)	Ст. байт мантиссы	Средний байт мантиссы	Мл. байт мантиссы
(байт 3)	(байт 2)	(байт 1)	(байт 0)

Таблица 5. Формат представления числа unsigned long.

Регистр с младшим адресом		Регистр со старшим адресом	
Старший байт	Средний байт	Средний байт	Младший байт
(байт 3)	(байт 2)	(байт 1)	(байт 0)

Таблица 6. Первый формат представления вещественного числа для Табло

Регистр с младшим адресом		Регистр со старшим адресом	
Мл. байт мантиссы	Средний байт мантиссы	Ст. байт мантиссы	Ст. байт (порядок+знак)
(байт 1)	(байт 0)	(байт 3)	(байт 2)

¹- для 0...5 – значение в формате float2 (см.табл.4), для 6..11 значение в формате float1' (см.табл.6))

²- для пакета4(требуется предварительное задание номеров параметров для индикации на ЦИ в соответствии со списком параметров МИ)