ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ ПОСТОЯННОГО ТОКА ЭП8556 И НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА ЭП8557

Руководство по эксплуатации 3ЭП.499.877 РЭ

СОДЕРЖАНИЕ

Введение	3
1 Описание и работа	3
1.1 Назначение ИП	3
1.2 Технические данные	4
1.3 Комплектность	11
1.4 Конструкция ИП	11
1.5 Устройство и работа	12
1.6 Маркировка и пломбирование	13
1.7 Упаковка	13
2 Использование по назначению	14
2.1 Подготовка ИП к использованию	14
2.2 Использование ИП	15
3 Поверка ИП	15
4 Гарантии изготовителя	16
5 Хранение	16
6 Транспортирование	16
7 Утилизация	17
Приложение А (обязательное) Габаритные и установочные размеры ИП	18
Приложение Б (обязательное) Схемы электрические подключения ИП	18
Приложение В (обязательное) Протоколы обмена данными ИП с ПЭВМ	18
Приложение Г (обязательное) Порядок работы с программой	
«Control RS-485»	19

Руководство по эксплуатации (далее – РЭ) предназначено для ознакомления работников эксплуатации с техническими характеристиками, устройством, принципом действия, монтажом и правилами эксплуатации преобразователей измерительных постоянного тока ЭП8556 и напряжения постоянного тока ЭП8557 (далее - ИП).

1 Описание и работа

1.1 Назначение ИП

1.1.1 ИП ЭП8556 предназначены для линейного преобразования одного или двух входных сигналов постоянного тока в один или два унифицированных выходных сигнала постоянного тока. ИП ЭП8556/1, ЭП8556/3, ЭП8556/5, ЭП8556/11, ЭП8556/14, Θ 18556/9, $9\Pi 8556/13$, $9\Pi 8556/7$. ЭП8556/17, ЭП8556/19, ЭП8556/21, ЭП8556/23, ЭП8556/25 в измерительную цепь включаются непосредственно или через измерительные преобразователи с аналоговым выходным сигналом, а ИП ЭП8556/2, ЭП8556/4, ЭП8556/6, $9\Pi 8556/10$, $9\Pi 8556/12$, $9\Pi 8556/16$, $\Pi 8556/18$ $\Pi 8556/20$. $9\Pi 8556/8$. ЭП8556/22, ЭП8556/24, ЭП8556/26 — через стандартные шунты постоянного тока с номинальным напряжением 75 mV или 100 mV.

ИП ЭП8557 предназначены для линейного преобразования одного или двух входных сигналов напряжения постоянного тока в один или два унифицированных выходных сигнала постоянного тока. В измерительную цепь ИП ЭП8557 включаются непосредственно.

По заказу ИП ЭП8556 и ИП ЭП8557 могут быть изготовлены со встроенным интерфейсом RS-485 для обмена информацией в цифровом коде с автоматизированной системой или с персональной ЭВМ (далее – ПЭВМ).

Протоколы обмена данными ИП с ПЭВМ приведены в приложении В.

- 1.1.2 В ИП обеспечивается гальваническое разделение входных и выходных цепей, входных цепей между собой, выходных цепей между собой, всех цепей с цепью питания.
- 1.1.3 ИП могут применяться для контроля токов и напряжений электрических систем и установок, для комплексной автоматизации объектов электро-энергетики, для автоматизированных систем управления технологическими процессами энергоемких объектов различных отраслей промышленности.
 - 1.1.4 Рабочие условия применения
- $1.1.4.1~\Pi o$ устойчивости к климатическим воздействиям ИП относятся к группе C4 по ГОСТ 12997-84 и предназначены для эксплуатации при температуре от минус 40 °C до плюс 55 °C и относительной влажности до 95 % при температуре 35 °C.
- $1.1.4.2~\Pi$ о устойчивости к воздействию атмосферного давления ИП относятся к группе Р1 по ГОСТ 12997-84 и предназначены для эксплуатации при атмосферном давлении 84 106,7 kPa (630 800 mm Hg).
- 1.1.4.3 По устойчивости к механическим воздействиям ИП относятся к виброустойчивым и вибропрочным, группа N1 по ГОСТ 12997-84.

- 1.1.4.4 Питание ИП может осуществляться по одному из вариантов:
- от сети переменного тока напряжением от 207 до 253 V с номинальным значением 230 V, частотой (50 \pm 0,5) Hz (условное обозначение при заказе $(230B, 50\Gamma \mu)$;
- от сети переменного тока напряжением от 80 до 265 V с номинальным значением 230 V, частотой (50 ± 0.5) Hz или от сети постоянного тока напряжением от 105 до 300 V с номинальным значением 230 V (далее универсальное питание, условное обозначение при заказе «230ВУ»);
- от сети постоянного тока напряжением от 37 до 72 V с номинальным значением 48 V (условное обозначение при заказе «48В»);
- от сети постоянного тока напряжением от 19 до 36 V с номинальным значением 24 V (условное обозначение при заказе «24В»);
- от сети постоянного тока напряжением от 10 до 18 V с номинальным значением 12 V (условное обозначение при заказе «12В»);
- от сети постоянного тока напряжением от 4,8 до 5,6 V с номинальным значением 5 V (условное обозначение при заказе «5В»).

Вариант питания указывается потребителем при заказе.

- 1.1.4.5 ИП являются однофункциональными, взаимозаменяемыми, восстанавливаемыми, ремонтируемыми изделиями.
- 1.1.4.6 ИП предназначены для установки на щитах, панелях, в стойках, шкафах. Монтаж ИП на объекте производится с помощью винтов или креплением на DIN-рейку 35 mm.
- 1.1.5 При заказе и в документации другой продукции, в которой ИП могут быть применены, необходимо указать:

Где, 1 – тип ИП («6» для ЭП8556, «7» для ЭП8557);

- 2 модификация ИП (см. таблицы 1.2, 1.3);
- 3 диапазон измерений входного сигнала (см. таблицы 1.2, 1.3);
- 4 количество входов (см. таблицы 1.2, 1.3);
- 5 диапазон изменений выходного сигнала (см. таблицы 1.2, 1.3);
- 6 условное обозначение напряжения питания (см. п.1.1.4.4);
- 7* условное обозначение встроенного интерфейса RS-485 «RS485»;
- 8* условное обозначение крепления ИП на DIN-рейку 35 mm «DIN-рейка 35 mm».
- * Параметры или дополнительные опции, при отсутствии которых, заказчик может не указывать их при оформлении заявки на ИП.

Примеры записи при заказе:

- $1 \overline{)}$ ЭП8 $\overline{)}$ 556/5 0-2,5-5 mA 1 вход 4-12-20 mA 230ВУ RS485;
- ТУ РБ 300080696.056-2000.
 - 2 ЭП8556/13 0-5 mA 2 входа 0-5 mA 230 B, 50 Гц;
- ТУ РБ 300080696.056-2000.
- $3\ \Im\Pi 8557/3 0-250\ V 2\ входа 0-5\ mA 24B RS485 DIN-рейка 35\ mm;$ ТУ РБ 300080696.056-2000.

1.2 Технические данные

- 1.2.1 Класс точности ИП -0.5.
- 1.2.2 Диапазоны входных и выходных сигналов, диапазоны изменений сопротивления нагрузки, количество входов и выходов ИП соответствуют значениям, приведенным в таблице 1.1 для ЭП8556 и в таблице 1.2 для ЭП8557.

Здесь и далее для модификаций ИП с несколькими входами и выходами характеристики приведены для каждого входа и выхода.

Каждая модификация ИП с интерфейсом RS-485 обеспечивает передачу информации в цифровом коде.

Таблица 1.1

Тип и	Диапазон	Выходн	юй сигнал	Диапазон		
модифика- ция ИП ¹⁾	измерений входного сигнала	диапазон изменений, mA	нормирующее значение, mA	изменений сопротивления нагрузки, $k\Omega$	Коли- чество входов	Коли- чество выходов
1	2	3	4	5	6	7
ЭП8556/1, ЭП8556/15	0-5 mA или 0-20 mA или 4-20 mA ²⁾	0-5	5	0-3		
ЭП8556/2, ЭП8556/16	0-75 mV или 0-100 mV ²⁾	0-5	5	0-3		
ЭП8556/3, ЭП8556/17	0-5 mA или 0-20 mA или 4-20 mA ²⁾	4-20	20	0-0,5		
ЭП8556/4, ЭП8556/18	0-75 mV или 0-100 mV ²⁾	4-20	20	0-0,5	1	1
ЭП8556/5, ЭП8556/19	-5-0-+5 mA или 0-2,5-5 mA или 0-10-20 mA или 4-12-20 mA ²⁾	-5-0-+5 или 0-2,5-5 или 4-12-20 ²⁾	5 или 20	0-3 или 0-0,5		
ЭП8556/6, ЭП8556/20	-75-0-+75 mV или -100-0-+100 mV ²⁾	-5-0-+5 или 0-2,5-5 или 4-12-20 ²⁾	5 или 20	0-3 или 0-0,5		
ЭП8556/7, ЭП8556/21	0-5 mA или 0-20 mA или 4-20 mA ²⁾	0-5	5	0-3	1 или 2 ²⁾	2

Окончание таблицы 1.1

1	2	3	4	5	6	7
ЭП8556/8, ЭП8556/22	0-75 mV или 0-100 mV ²⁾	0-5	5	0-3		
ЭП8556/9, ЭП8556/23	0-5 mA или 0-20 mA или 4-20 mA ²⁾	4-20	20	0-0,5		
ЭП8556/10, ЭП8556/24	0-75 mV или 0-100 mV ²⁾	4-20	20	0-0,5		
ЭП8556/11, ЭП8556/25	-5-0-+5 mA или 0-2,5-5 mA или 0-10-20 mA или 4-12-20 mA ²⁾	-5-0-+5 или 0-2,5-5 или 4-12-20 ²⁾	5 или 20	0-3 или 0-0,5	1 или 2 ²⁾	2
ЭП8556/12, ЭП8556/26	-75-0-+75 mV или -100-0-+100 mV ²⁾	-5-0-+5 или 0-2,5-5 или 4-12-20 ²⁾	5 или 20	0-3 или 0-0,5		
ЭП8556/13 ЭП8556/14	0-5 mA -5-0-+5 mA	0-5 -5-0-+5	5 5	0-3 0-3	2	2

Примечания

Таблица 1.2

Тип и модификация ИП ¹⁾	Диапазон измерений входного сигнала, V ²⁾	Выходно диапазон изменений, mA 3	й сигнал нормирую- щее значе- ние, mA	Диапазон изменений сопротивления нагрузки, kΩ	Количество входов	Коли- чество выхо- дов 7
ЭП8557/1, ЭП8557/7	0-1 0-5	0-5	5	0-3	0	·
ЭП8557/2, ЭП8557/8	0-10 0-60	4-20	20	0-0,5	1	1
ЭП8557/3, ЭП8557/9	0-100 0-150	0-5	5	0-3		
ЭП8557/4, ЭП8557/10	0-250 0-500 0-1000	4-20	20	0-0,5	1 или 2 ³⁾	2

¹ ИП ЭП8556/1-ЭП8556/14 имеют время установления выходного сигнала 0.5 s; ИП ЭП8556/15-ЭП8556/26 — 0.005 s. 2 Значения данных параметров указываются при заказе.

)кончание ⁻	TOE HILLIE .	1	7
ι.	,кончание	гаолины		. L

1	2	3	4	5	6	7
ЭП8557/5, ЭП8557/11	-1-0-+1 -5-0-+5 -10-0-+10 -60-0-+60	-5-0-+5 или 0-2,5-5 или 4-12-20 ³⁾	5	0-3 или 0-0,5	1	1
ЭП8557/6, ЭП8557/12	-100-0-+100 -150-0-+150 -250-0-+250 -500-0-+500 -1000-0-+1000	-5-0-+5 или 0-2,5-5 или 4-12-20 ³⁾	5 или 20	0-3 или 0-0,5	1 или 2 ³⁾	2

Примечания

- 1.2.3 Пределы допускаемой основной приведенной погрешности (далее основной погрешности) ИП \pm 0,5 % от нормирующего значения выходного сигнала.
- $1.2.4~\rm M\Pi$ соответствуют требованию $1.2.3~\rm при$ изменении сопротивления нагрузки от 0 до $3~\rm k\Omega$ или от 0 до $0.5~\rm k\Omega$ для соответствующих модификаций, указанных в таблицах 1.1, 1.2.
 - 1.2.5 Время установления рабочего режима ИП не более 0,5 h.

Время непрерывной работы ИП не ограничено.

1.2.6 Пульсация выходного сигнала ИП на максимальной нагрузке не более значений, указанных в таблице 1.3.

Таблина 1.3

Диапазон изменений выходного сигнала, mA	Диапазон изменений сопротивления нагрузки, kΩ	Время установления выходного сигнала, s	Пульсация выходного сигнала, mV
0-2,5-5 или 0-5	0-3	0,5	90
или -5-0-+5	0-3	0,005	150
4-20	0.05	0,5	60
или 4-12-20	0-0,5	0,005	100

- 1.2.7 Время установления выходного сигнала ИП при скачкообразном изменении входного сигнала от нулевого значения до любого в пределах диапазона измерений не более:
 - для $Э\Pi8556/1$ - $Э\Pi8556/14$ и $Э\Pi8557/1$ - $Э\Pi8557/6$ 0.5 s;
 - для ЭП8556/15-ЭП8556/26 и ЭП8557/7-ЭП8557/12 0,005 s.

¹ ИП ЭП8557/1-ЭП8557/6 имеют время установления выходного сигнала 0,5 s; ИП ЭП8557/7-ЭП8557/12 — 0,005 s.

² Каждая модификация ИП изготавливается на один из диапазонов измерений входного сигнала, который указывается при заказе.

³ Значения данных параметров указываются при заказе.

- 1.2.8 ИП устойчивы к воздействию следующих климатических факторов:
- температуры окружающего воздуха от минус 40 °C до плюс 55 °C;
- относительной влажности окружающего воздуха (95 \pm 3) % при температуре 35 $^{\circ}\text{C}.$
- 1.2.9 Пределы допускаемых дополнительных приведенных погрешностей (далее дополнительных погрешностей) ИП, вызванных изменением влияющих величин от нормальных значений, указанных в таблице 1.4, в процентах от нормирующего значения выходного сигнала:
- а) \pm 0,4 % при изменении температуры окружающего воздуха от (20 \pm 2) °C до минус 40 °C и плюс 55 °C на каждые 10 °C;
- б) \pm 1,0 % при воздействии относительной влажности (95 \pm 3) % при температуре 35 °C;
- в) \pm 0,5 % при воздействии внешнего однородного магнитного поля постоянного тока с магнитной индукцией 0,5 mT при самом неблагоприятном направлении магнитного поля;
- Γ) \pm 0,25 % при изменении напряжения питания от номинального до минимального и максимального значений для всех вариантов питания:
- от сети переменного тока напряжением от 207 до 253 V с номинальным значением 230 V, частотой (50 ± 5) Hz;
- от сети переменного тока напряжением от 80~V до 265~V с номинальным значением 230~V, частотой (50 ± 5) Нz или от сети постоянного тока напряжением от 105~V до 300~V с номинальным значением 230~V (универсальный источник питания);
- от сети постоянного тока напряжением от 37 V до 72 V с номинальным значением 48 V;
- от сети постоянного тока напряжением от 19 V до 36 V с номинальным значением 24 V;
- от сети постоянного тока напряжением от 10~V до 18~V с номинальным значением 12~V;
- от сети постоянного тока напряжением от 4,8 V до 5,6 V с номинальным значением 5 V;
- д) \pm 0,5 % при воздействии переменной составляющей входного сигнала амплитудой до 15 % конечного значения диапазона измерений входного сигнала частотой 50 400 Hz для $Э\Pi8556/1$ $Э\Pi8556/1$ 4, $Э\Pi8557/1$ $Э\Pi8557/6$ 6. При этом пульсация выходного сигнала не превышает значений, указанных в 1.2.6.

Таблица 1.4

Влияющий фактор	Нормальное значение
1	2
1 Температура окружающего воздуха, °С	20 ± 2
2 Относительная влажность окружающего	
воздуха, %	30 - 80
3 Атмосферное давление, kPa (mm Hg)	84 – 106,7 (630 – 800)
4 Параметры сети питания	
4.1 Сеть питания переменного тока	
- напряжение, V	$230 \pm 4,6$
- частота источника питания, Hg	50 ± 0.5
- форма кривой напряжения	Синусоидальная с коэффи-
	циентом нелинейных иска-
	жений не более 5 %
4.2 Сеть питания постоянного тока	
- напряжение, V	230 ± 4.6 ; 48 ± 0.96 ; 24 ± 0.48 ;
	$12 \pm 0,24; 5 \pm 0,1$
5 Сопротивление нагрузки, kΩ:	
- 3H8556/1, 3H8556/2, 3H8556/5-3H8556/8, 3H8556/11-	
ЭП8556/16, ЭП8556/19-ЭП8556/22, ЭП8556/25, ЭП8556/26; ЭП8557/1, ЭП8557/3, ЭП8557/5, ЭП8557/6, ЭП8557/7,	
ЭП8557/9, ЭП8557/11, ЭП8557/12	$2,5 \pm 0,5$
- ЭП8556/3-ЭП8556/6, ЭП8556/9-ЭП8556/12, ЭП8556/17-	2.3 ± 0.3
ЭП8556/20, ЭП8556/23-ЭП8556/26; ЭП8557/2, ЭП8557/4-	
ЭП8557/6, ЭП8557/8, ЭП8557/10-ЭП8557/12	0.4 ± 0.1
6 Коэффициент переменной составляющей входного	3,0 % конечного значения
сигнала частотой 50-400 Hz	диапазона измерений вход-
	ного сигнала
7 Магнитное и электрическое поля	Практическое отсутствие
	магнитного и электрического
0 C	полей, кроме земного
8 Сопротивление подводящих проводов по каждому входу для ЭП8556/2, ЭП8556/4, ЭП8556/6, ЭП8556/8,	
ЭП8556/10, ЭП8556/12, ЭП8556/16, ЭП8556/18,	
ЭП8556/20, ЭП8556/22, ЭП8556/24, ЭП8556/26,	
Ω , не более	0,5
9 Рабочее положение ИП	Любое

 $1.2.10~{\rm И\Pi}$ выдерживают без повреждений двухчасовую перегрузку входным сигналом, равным 120~% конечного значения диапазона измерений.

Выходное напряжение при перегрузке не превышает 30 V на максимальной нагрузке.

1.2.11 ИП выдерживают кратковременные перегрузки входным сигналом в соответствии с таблицей 1.5 для ЭП8556 и таблицей 1.6 для ЭП8557.

Тa	бπ	ип	ıa	1	5
1 4	17./ I		14)

Кратность входного	Число	Длительность каж-	Интервал между двумя
сигнала	перегрузок	дой перегрузки, s	перегрузками, s
2	10	10	10
7	2	15	60
10	5	3	2,5
20	2	0,5	0,5

Таблица 1.6

Кратность входного	Число	Длительность каж-	Интервал между двумя
сигнала	перегрузок	дой перегрузки, s	перегрузками, s
1,5	9	0,5	15

Выходное напряжение при перегрузках не превышает 30 V на максимальной нагрузке.

1.2.12 ИП выдерживают без повреждений разрыв нагрузки в течение 4 h при входном сигнале, равном конечному значению диапазона измерений.

Величина напряжения на разомкнутых выходных зажимах при этом не превышает 30 V.

- 1.2.13 При заземлении любого выходного зажима ИП соответствуют требованию 1.2.3.
- 1.2.14 Внешние подключения выполняются при помощи клеммной колодки ИП.

Каждый зажим клеммной колодки обеспечивает подключение медных или алюминиевых проводов сечением от 1 до 6 mm².

Зажимы клеммной колодки обеспечивают надежный контакт и исключают возможность самоотвинчивания.

Параметры проводов внешних подключений выбирает потребитель в зависимости от конкретного проекта.

- 1.2.15 ИП устойчивы и прочны к воздействию синусоидальной вибрации в диапазоне частот от 10 до 55 Hz при амплитуде смещения 0,15 mm.
 - 1.2.16 Степень защиты ИП по ГОСТ 14254:
 - IP20 для клемм подключения;
 - IP40 для остальных частей оболочки ИП.
 - 1.2.17 ИП в транспортной таре выдерживают без повреждений:
 - воздействие температуры от минус 50 $^{\circ}$ C до плюс 50 $^{\circ}$ C;
 - воздействие относительной влажности (95 \pm 3) % при температуре 35 $^{\circ}$ C .
- $1.2.18~\mathrm{И\Pi}$ в транспортной таре выдерживают без повреждений в направлении, обозначенном на таре манипуляционным знаком по ГОСТ 14192-96 "Верх", воздействие вибрации в диапазоне частот от 10 до 55 Hz при амплитуде смещения $0.15~\mathrm{mm}$.
- 1.2.19 ИП по электромагнитной совместимости соответствуют требованиям ТР ТС 020/2011, ГОСТ Р МЭК 61326-1-2014 для оборудования класса А.
- 1.2.19.1 Уровень индустриальных радиопомех, создаваемых ИП, не превышает значений, установленных в ГОСТ Р МЭК 61326-1-2014,

СТБ EN 55011-2012 для оборудования класса A, группы 1.

- 1.2.19.2 ИП устойчивы к радиочастотному электромагнитному полю по испытательному уровню 3 согласно ГОСТ 30804.4.3-2013 и критерию качества функционирования А согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.19.3 ИП устойчивы к кондуктивным помехам, наведенным радиочастотными электромагнитными полями, по испытательному уровню 2 согласно СТБ IEC 61000-4-6-2011 и критерию качества функционирования А согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.19.4 ИП устойчивы к магнитному полю промышленной частоты по испытательному уровню 4 согласно ГОСТ IEC 61000-4-8-2013 и критерию качества функционирования А согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.19.5 ИП устойчивы к электростатическим разрядам по испытательному уровню 2 для контактного разряда, испытательному уровню 3 для воздушного разряда согласно ГОСТ 30804.4.2-2013 и критерию качества функционирования В согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.19.6 ИП устойчивы к наносекундным импульсным помехам по испытательному уровню 3 согласно ГОСТ 30804.4.4-2013 и критерию качества функционирования В согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.19.7 ИП устойчивы к микросекундным импульсным помехам большой энергии по классу условий эксплуатации 3 согласно ГОСТ IEC 61000-4-5-2017 и критерию качества функционирования В согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.19.8 ИП устойчивы к провалам, кратковременным прерываниям и изменениям напряжения электропитания по классу электромагнитной обстановки 3 согласно ГОСТ 30804.4.11-2013 и критерию качества функционирования В согласно ГОСТ Р МЭК 61326-1-2014.
- 1.2.20 ИП по безопасности соответствуют требованиям ТР ТС 004/2011, ГОСТ 12.2.007.0-75, ГОСТ IEC 61010-1-2014, ГОСТ IEC 61010-2-030-2013.

ИП по способу защиты человека от поражения электрическим током соответствуют классу II по ГОСТ 12.2.007.0-75.

ИП имеют двойную или усиленную изоляцию, соответствуют степени загрязнения 2, категории перенапряжения II по ГОСТ IEC 61010-1-2014.

ИП ЭП8556 соответствуют категории измерения III по ГОСТ 12.2.091-2012.

ИП ЭП8557 с конечным значением диапазона измерений входного сигнала до 250 V включительно соответствуют категории измерения III, с конечным значением диапазона измерений входного сигнала 500 V — категории измерения II, с конечным значением диапазона измерений входного сигнала 1000 V — категории измерения I по ГОСТ IEC 61010-2-030-2013.

Электрическая изоляция различных цепей ИП между собой и по отношению к корпусу выдерживает в течение 1 min действие испытательного напряжения переменного тока среднеквадратичного значения частотой 50 Hz, величина которого указана в таблице 1.7 для ЭП8556 и в таблице 1.8 для ЭП8557.

Зазоры соответствуют значениям, указанным в таблицах 1.7, 1.8.

Входные цепи ИП ЭП8556/1, ЭП8556/3, ЭП8556/5, ЭП8556/7, ЭП8556/9, ЭП8556/11, ЭП8556/13-ЭП8556/15, ЭП8556/17, ЭП8556/19, ЭП8556/21, ЭП8556/23, ЭП8556/25 рассчитаны на номинальное рабочее напряжение 150 V.

Входные цепи ИП ЭП8556/2, ЭП8556/4, ЭП8556/6, ЭП8556/8, ЭП8556/10, ЭП8556/12, ЭП8556/16, ЭП8556/18, ЭП8556/20, ЭП8556/22, ЭП8556/24, ЭП8556/26 рассчитаны на номинальное рабочее напряжение 300 V.

Таблица 1.7

		Испытательное напряжение, V, между цепями; зазоры, mm							
Рабочее напря- жение, V	корпус			вход 1, вход 2		вход 1	выход 1	выход 2	цепь пи- тания
	вход 1, вход 2	цепь пи-		выход 1, выход 2, интер- фейс	цепь пита- ния		выход 2, интерфейс	интер- фейс	выход 1, выход 2, интер- фейс
150	2210; 3,0	2210 (1060); 3,0	710; 0,3	2210; 3,0	2210 (2210); 3,0	2210; 3,0	710; 0,3	710; 0,3	2210 (1060); 3,0
300	3510; 5,9	2210 (1060); 3,0	710; 0,3	3510; 5,9	3510 (3510); 5,9	3510; 5,9	710; 0,3	710; 0,3	2210 (1060); 3,0

Примечание — Значения испытательных напряжений, указанные без скобок, распространяются на ИП с питанием от сети переменного тока 230 V, 50 Hz и с универсальным питанием; указанные в скобках — для остальных вариантов питания.

Таблица 1.8

Конеч-		Ист	тытательн	ое напряже	ение, V, мех	кду цепям	и; зазоры	, mm	
ное значение		корпус		вход 1,	вход 2	вход 1	выход 1	выход 2	цепь пи- тания
диапа- зона из- мерений входно- го сиг- нала, V	вход 1, вход 2	цепь пита- ния	выход 1, выход 2	выход 1, выход 2, интерфейс	цепь пи- тания	вход 2	выход 2, интер- фейс	интер- фейс	выход 1, выход 2, интер- фейс
1; 5; 10	710; 0,3			710; 0,3	2210 (1060); 3,0	710; 0,3			
60; 100	1390; 1,5	2210;	710; 0,3	1390; 1,5	2210 (1390); 3,0	1390; 1,5		710; 0,3	2210 (1060);
150	2210; 3,0	3,0	710, 0,3	2210; 3,0	2210 (2210); 3,0	2210; 3,0		710, 0,3	3,0
250; 500; 1000	3510; 5,9			3510; 5,9	3510 (3510); 5,9	3510; 5,9			

Примечание – Значения испытательных напряжений, указанные без скобок, распространяются на ИП с питанием от сети переменного тока 230 V, 50 Hz и с универсальным питанием; указанные в скобках – для остальных вариантов питания.

- 1.2.21 На корпусе ИП предусмотрены места для нанесения оттиска клейма отдела технического контроля изготовителя (далее ОТК) и оттиска клейма знака поверки средств измерений (далее Знак поверки).
- 1.2.22 Мощность, потребляемая ИП от измерительной цепи при входном сигнале, равном конечному значению диапазона измерений, и от сети питания, не более значений, приведенных в таблице 1.9.

Таблица 1.9

		Мощнос	ть, потребляем	иая	
	Конечное значение	от измерительной	от сети питания		
Тип ИП	диапазона измерений входного сигнала	цепи, W, не более	переменного тока, V·A, не более	постоянного тока, W, не более	
ЭП8556	5 mA; 20 mA; 75 mV; 100 mV	0,005	5,5	4,0	
	1 V	0,005			
	5 V	0,01			
	10 V	0,05			
	60 V	0,1			
ЭП8557	100 V	0,1	5,5	4,0	
	150 V	0,1			
	250 V	0,1			
	500 V	0,15			
	1000 V	0,3			

- 1.2.23 Габаритные размеры ИП не более 110x120x125 mm или 110x120x136 mm (при креплении на DIN-рейку 35 mm).
 - 1.2.24 Macca ИП не более 0,8 kg.
- 1.2.25 Средняя наработка на отказ ИП с учетом технического обслуживания не менее $50000\ h.$
- 1.2.26 Среднее время восстановления работоспособного состояния ИП не более $2\ h.$
 - 1.2.27 Средний срок службы ИП не менее 15 лет.

1.3 Комплектность

Комплект поставки ИП соответствует указанному в таблице 1.10.

Таблица 1.10

Обозначение	Наименование	Количество		
Ооозначение	Паименование	ЭП8556	ЭП8557	
3ЭП.499.877	Преобразователь измерительный по-			
	стоянного тока ЭП8556	1		
3ЭП.499.877	Преобразователь измерительный на-			
	пряжения постоянного тока ЭП8557		1	
3ЭП.499.877 РЭ	Руководство по эксплуатации	1 *	1 *	
МП.ВТ.140-2006	Методика поверки	1 *	1 *	
3ЭП.499.877-01 ПС	Паспорт	1		
3ЭП.499.877-02 ПС	Паспорт		1	

^{*} Для партии ИП, предназначенных одному потребителю, количество экземпляров руководства по эксплуатации и методики поверки должно оговариваться при заказе.

1.4 Конструкция ИП

ИП конструктивно состоит из следующих основных узлов:

- основания с двумя клеммными колодками;
- крышки корпуса;
- двух крышек клеммных колодок;
- двух или трех печатных плат (в зависимости от модификации ИП) с элементами схемы и трансформаторами гальванической развязки;
 - трансформатора питания, расположенного на основании.

Основание с клеммными колодками, крышка корпуса, крышки клеммных колодок выполнены из изоляционного материала.

В клеммных колодках размещены зажимы для подключения внешних цепей. Зажимы обеспечивают подключение медных или алюминиевых проводов сечением от 1 до 6 mm².

Зажимы для подключения внешних цепей защищены от случайного прикасания при помощи двух крышек клеммных колодок, в которых имеются отверстия для пломбирования.

Крышка корпуса крепится к основанию при помощи двух винтов М3. Для обеспечения герметичного соединения крышки с основанием используется резиновая прокладка, размещаемая в пазе основания.

Крепление ИП к щиту производится со снятыми крышками клеммных колодок двумя винтами M4x12 через отверстия, имеющиеся в основании.

В случае крепления ИП на DIN-рейку 35 mm, предусмотрены два кронштейна, установленные на основании корпуса.

1.5 Устройство и работа ИП

Принцип действия ИП основан на преобразовании аналогового входного сигнала постоянного тока или аналогового входного сигнала напряжения постоянного тока (см. таблицы 1.1, 1.2) в цифровой код. Далее вычисление требуемой величины производится в цифровой форме. Измеренное значение в цифровой форме передается по интерфейсу RS-485, а также преобразуется в аналоговый выходной сигнал постоянного тока.

Функция преобразования ИП имеет следующий вид:

$$I_{BMX,i} = \kappa \cdot A_{BX,i} + I_{BMX,H}, \tag{1}$$

где $I_{\text{вых.}i}$ — значение выходного сигнала в проверяемой точке, mA;

 $A_{BX,i}$ — значение входного сигнала в проверяемой точке, mA или mV и V; $I_{BЫX,H}$ — начальное значение диапазона изменений выходного сигнала, mA;

к – коэффициент преобразования, определяемый по формуле:

$$\kappa = \frac{I_{\text{BbIX.K}} - I_{\text{BbIX.H}}}{A_{\text{BY K}}} , \qquad (2)$$

где $I_{\text{вых.к}}$ — конечное значение диапазона изменений выходного сигнала, mA; $A_{\text{вх.к}}$ — конечное значение диапазона измерений входного сигнала, mA или mV и V.

1.6 Маркировка и пломбирование

1.5.1 На крышке корпуса крепится табличка с указанием наименования, обозначения типа и модификации ИП, товарного знака изготовителя, всех необходимых параметров ИП и схема подключения внешних цепей.

На табличке также нанесены:

- символ внимания "⚠";
- символ оборудования, защищенного двойной или усиленной изоляцией " <a>" ;
- символ рода тока входного сигнала " --- ";
- Знак утверждения типа средств измерений " 🗓 " ;
- единый знак обращения продукции на рынке государств членов Евразийского экономического союза " **FIT** ";
- идентификационный номер ИП, состоящий из двух компонентов "XX0000", где:
 - XX две последние цифры года изготовления ИП;
 - 0000 порядковый номер ИП по системе нумерации изготовителя.
- 1.5.2 ИП имеют оттиск клейма ОТК и оттиск клейма Знака поверки на винтах, крепящих крышку корпуса к основанию.
- 1.5.3 На транспортной таре нанесены манипуляционные знаки "Верх", "Хрупкое. Осторожно", "Беречь от влаги", цифровой код и (или) буквенное обозначение материала, из которого изготавливается упаковка и «петля Мебиуса», наименование и адрес грузополучателя и пункта назначения, наименование страны-изготовителя, наименование и адрес изготовителя, грузоотправителя и пункта отправления по ГОСТ 14192-96.

1.7 Упаковка

1.6.1 ИП упакован в коробку картонную упаковочную в соответствии с конструкторской документацией.

Внутренняя упаковка соответствует ВУ-7 по ГОСТ 9.014-78, вариант временной противокоррозионной защиты — ВЗ-0.

1.6.2 В качестве транспортной тары применяются ящики из древесноволокнистой плиты или гофрированного картона, соответствующие конструкторской документации.

2 Использование по назначению

2.1 Подготовка ИП к использованию

- 2.1.1 При монтаже и эксплуатации ИП необходимо соблюдать требования ТКП 181-2009 и Межотраслевых правил по охране труда при работе в электроустановках.
- 2.1.2 Аппараты защиты от аварийного режима работы устанавливаются потребителем на щитах, панелях, в стойках, шкафах. Параметры аппаратов защиты определяются проектами систем, в которых применяются ИП.
- 2.1.3 Противопожарная защита в помещениях, где эксплуатируются ИП, должна достигаться:
 - применением автоматических установок пожарной сигнализации;
 - применением средств пожаротушения;
 - организацией своевременного оповещения и эвакуации людей.
- 2.1.4 Разметка места крепления ИП на щите (панели) должна производиться в соответствии с установочными размерами, приведенными в приложении А.
 - 2.1.5 Перед установкой ИП на объекте необходимо:
- снять крышки клеммных колодок, закрывающие зажимы подключения внешних цепей;
- установить ИП на рабочее место и закрепить через отверстия в основании с помощью двух винтов M4x12, проложив под каждый винт плоскую и пружинную шайбы.

В случае крепления ИП на DIN-рейку 35 mm, используют два кронштейна, установленные на основании корпуса. ИП устанавливают на DIN-рейку 35 mm, защелкнув кронштейны.

2.1.6 После установки ИП на рабочее место подсоединяют внешние цепи в соответствии со схемами подключения, приведенными в приложении Б.

Суммарное сопротивление пары проводов, подключаемых к входу ИП ЭП8556/2, ЭП8556/4, ЭП8556/6, ЭП8556/8, ЭП8556/10, ЭП8556/12, ЭП8556/16, ЭП8556/18, ЭП8556/20, ЭП8556/22, ЭП8556/24, ЭП8556/26, должно быть не более $0.5~\Omega$.

Внешние подключения следует выполнять при отключенных входных сигналах и сетевом питании.

2.1.7 После выполнения внешних подключений необходимо установить крышки клеммных колодок и опломбировать крышку, защищающую зажимы подключения цепей с опасным напряжением от случайного прикасания, пропустив леску через отверстия в крышке корпуса ИП, отверстие в крышке клеммной колодки и паз, имеющийся между клеммной колодкой и крышкой клеммной колодки. При проведении пломбирования обеспечить натяжение лески, исключающее снятие крышки без применения инструмента.

2.2 Использование ИП

- 2.2.1 ИП по способу защиты от поражения электрическим током соответствуют классу II по ГОСТ 12.2.007.0-75.
 - 2.2.2 Персонал, допущенный к работе с ИП, должен:
 - знать ИП в объеме настоящего РЭ;
- иметь допуск к работе с электрическими установками напряжением до 1000 V.

2.2.3 ЗАПРЕЩАЕТСЯ:

- ЭКСПЛУАТИРОВАТЬ ИП СО СНЯТОЙ КРЫШКОЙ КЛЕММНОЙ КОЛОДКИ, ЗАЩИЩАЮЩЕЙ ЗАЖИМЫ ПОДКЛЮЧЕНИЯ ЦЕПЕЙ С ОПАСНЫМ НАПРЯЖЕНИЕМ ОТ СЛУЧАЙНОГО ПРИКАСАНИЯ. ПЛОМБА И КРЫШКА КЛЕММНОЙ КОЛОДКИ ДОЛЖНЫ СНИМАТЬ-СЯ ТОЛЬКО ПОСЛЕ ПРОВЕДЕНИЯ ИНСТРУКТАЖА ПО ЭЛЕКТРОБЕЗОПАСНОСТИ И ВЫДАЧИ ПИСЬМЕННОГО РАЗРЕШЕНИЯ НА ПРОВЕДЕНИЕ РЕГЛАМЕНТНЫХ ИЛИ ДРУГИХ ВИДОВ РАБОТ;
- ПРОВОДИТЬ ВНЕШНИЕ ПОДКЛЮЧЕНИЯ НЕ ОТКЛЮЧИВ ВХОДНОЙ СИГНАЛ И СЕТЕВОЕ ПИТАНИЕ;
- ЭКСПЛУАТИРОВАТЬ ИП ПРИ ОБРЫВАХ ПРОВОДОВ ВНЕШНИХ ПРИСОЕДИНЕНИЙ.
- 2.2.4 Опасный фактор напряжение питания $230~\mathrm{V}$, а для ИП ЭП8557 дополнительно входное напряжение.

Меры защиты от опасного фактора – соблюдение условий 2.2.2, 2.2.3.

В случае возникновения аварийных условий и режимов работы ИП необходимо немедленно отключить.

- 2.2.5 При включении ИП необходимо:
- ИП, имеющий встроенный интерфейс RS-485, подключить к ПЭВМ через преобразователь интерфейса RS-485 в RS-232 или USB. При выпуске из производства ИП поставляются с активированными протоколом обмена данными ИП с ПЭВМ «MODBUS (RTU)» и скоростью обмена данными 9600 бит/с.

Выбор типа протокола обмена данными ИП с ПЭВМ («MODBUS (RTU)» или «МНПП «Электроприбор»), проверка работоспособности интерфейса RS-485 и получение технической информации от ИП осуществляется при помощи служебной программы «Control_RS-485».

- подать на ИП напряжение питания;
- установить в ПЭВМ программу «Control_RS-485» и следовать указаниям на дисплее ПЭВМ. Порядок работы с программой приведен в приложении Г;
 - подать на ИП входной сигнал.

На дисплее ПЭВМ должно отобразиться значение измеренного параметра с единицами измерения. На аналоговых выходах ИП должны появиться значения выходных сигналов, соответствующих входному сигналу.

3 Поверка ИП

Поверка ИП проводится в соответствии с документом "Преобразователи измерительные постоянного тока ЭП8556 и напряжения постоянного тока ЭП8557. Методика поверки. МП.ВТ.140-2006." Межповерочный интервал — 12 месяцев.

4 Гарантии изготовителя

- 7.1 Изготовитель гарантирует соответствие ИП требованиям технических условий ТУ РБ 300080696.056-2000 и настоящего РЭ при соблюдении условий эксплуатации, хранения и транспортирования.
- 7.2 Гарантийный срок эксплуатации 18 месяцев со дня ввода ИП в эксплуатацию.

Гарантийный срок хранения – 6 месяцев с момента изготовления ИП.

- 7.3 Изготовитель не осуществляет гарантийное обслуживание при нарушении сохранности оттиска клейма ОТК и оттиска клейма Знака поверки.
- 7.4 Сервисное обслуживание в послегарантийный период изготовитель осуществляет по отдельному договору.

5 Хранение

4.1 Хранение ИП на складах должно проводиться на стеллажах в упаковке изготовителя при температуре окружающего воздуха от 5 °C до 40 °C и относительной влажности не более 80 % при температуре 25 °C (условия хранения 1 (Π) по ГОСТ 15150-69).

В помещениях для хранения не должно быть пыли, а также газов и паров, вызывающих коррозию.

4.2 Помещения для хранения ИП должны быть оборудованы автоматическими установками пожарной сигнализации и средствами пожаротушения.

6 Транспортирование

5.1 Транспортирование ИП должно осуществляться закрытым железнодорожным или автомобильным транспортом, а также в отапливаемых герметизированных отсеках самолетов в соответствии с действующими правилами перевозки грузов, на соответствующем виде транспорта.

В качестве транспортной тары применяются ящики из древесноволокнистой плиты или гофрированного картона.

При упаковывании ИП в ящики масса брутто грузового места при пересылке железнодорожным и автомобильным транспортом не более 50 kg, при пересылке почтой – не более 20 kg. Габаритные размеры грузового места (длина, ширина, высота) для максимального количества изделий, упакованных в транспортную тару, должны быть не более 750х460х346 mm для ящиков из древесноволокнистой плиты и 675х435х315 mm для ящиков из гофрированного картона.

- 5.2 Транспортирование ИП должно проводиться в упаковке изготовителя при температуре окружающего воздуха от минус 50 °C до плюс 50 °C и относительной влажности до (95 ± 3) % при температуре 35 °C.
- 5.3 При необходимости особых условий транспортирования это должно быть оговорено специально в договоре на поставку.
- 5.4 При погрузке, разгрузке и транспортировании ИП необходимо руководствоваться требованиями, обусловленными манипуляционными знаками "Верх", "Хрупкое. Осторожно", "Беречь от влаги" по ГОСТ 14192-96, нанесенными на транспортную тару.

7 Утилизация

- 6.1 По окончании срока службы (эксплуатации) ИП направляется на утилизацию. Утилизация ИП осуществляется по утвержденным у потребителя нормативным правовым актам.
- 6.2 ИП не содержит веществ и компонентов, вредно влияющих на окружающую среду и здоровье человека, поэтому особых мер по защите при утилизации не требуется.

Приложение А (обязательное)

Габаритные и установочные размеры ИП

Рисунок А.1 – Габаритные размеры ИП

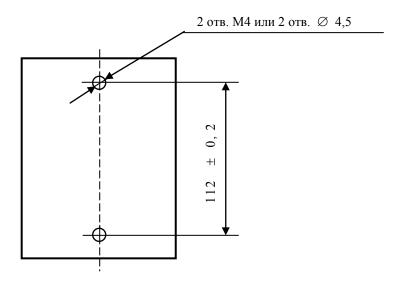
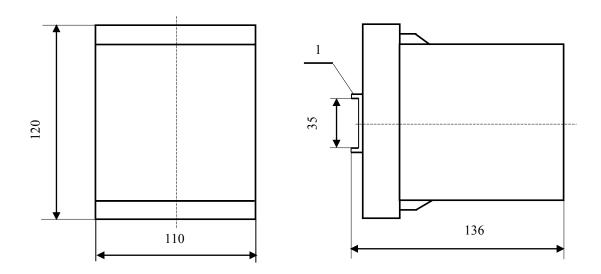



Рисунок А.2 – Установочные размеры ИП

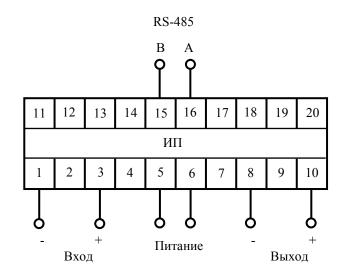
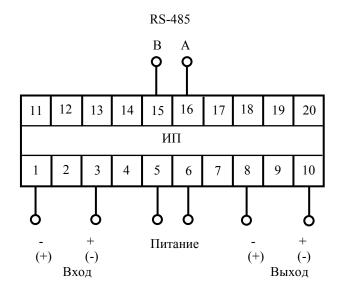

1 – два кронштейна для крепления ИП на DIN-рейку 35 mm.

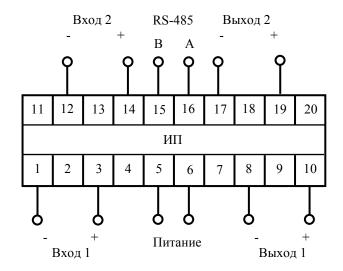
Рисунок А.3 – Габаритные и установочные размеры ИП при креплении на DIN-рейку 35 mm

Приложение Б


(обязательное)

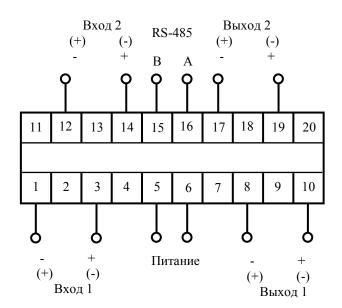
Схемы электрические подключения ИП

Примечание – При питании от сети постоянного тока на зажим 5 подается «-», а на зажим 6 подается «+»; для универсального питания полярность не имеет значения.


Рисунок Г.1 – Схема электрическая подключения ИП ЭП8556/1-ЭП8556/4, ЭП8556/15-ЭП8556/18 и ИП ЭП8557/1, ЭП8557/2, ЭП8557/7, ЭП8557/8

Примечания

- 1 При питании от сети постоянного тока на зажим 5 подается «-», а на зажим 6 подается «+»; для универсального питания полярность не имеет значения.
- 2 Обозначения входа и выхода «(+)» и «(-)» соответствуют обратной полярности входного и выходного сигналов.


Рисунок Г.2 – Схема электрическая подключения ИП ЭП8556/5, ЭП8556/6, ЭП8556/19, ЭП8556/20 и ИП ЭП8557/5, ЭП8557/11

Примечания

- 1 При питании от сети постоянного тока на зажим 5 подается «-», на зажим 6 подается «+»; для универсального питания полярность не имеет значения.
- 2 На схеме приведено подключение для данных модификаций ИП, имеющих наибольшее количество входов. Если ИП имеет один вход, то подключение «Вход 2» не учитывается.

Рисунок Г.3 — Схема электрическая подключения ИП ЭП8556/7-ЭП8556/10, ЭП8556/13, ЭП8556/21-ЭП8556/24 и ИП ЭП8557/3, ЭП8557/4, ЭП8557/9, ЭП8557/10

Примечания

- 1 При питании от сети постоянного тока на зажим 5 подается «-», на зажим 6 подается «+»; для универсального питания полярность не имеет значения.
- 2 Обозначения входа и выхода «(+)» и «(-)» соответствуют обратной полярности входного и выходного сигналов.
- 3 На схеме приведено подключение для данных модификаций ИП, имеющих наибольшее количество входов. Если ИП имеет один вход, то подключение «Вход 2» не учитывается.

Рисунок Г.4 – Схема электрическая подключения ИП ЭП8556/11, ЭП8556/12, ЭП8556/14, ЭП8556/25, ЭП8556/26 и ИП ЭП8557/6, ЭП8557/12

Приложение В

(обязательное)

Протоколы обмена данными ИП с ПЭВМ

1 Протокол обмена данными ИП с ПЭВМ «MODBUS (RTU)»

Коды функций, используемые в протоколе связи MODBUS

Код	Значение в MODBUS	Действие
03	Считывание регистров хранения	Получение данных от ИП
06	Задание записи в один из регистров	Передача данных к ИП
16	Задание записи в несколько регистров	Передача данных к ИП

Подробное описание команд

Получение данных от ИП (код функции 03)

Запрос:

Адрес ИП	Функция	Стартовый	Число	Контроль
	(03)	адрес	слов	ошибок
1 байт	1 байт	2 байта	2 байта	2 байта

Значение полей сообщений:

Стартовый адрес	Адрес первого слова в таблице, подлежащей считыванию
Число слов	Число слов, подлежащих считыванию из таблицы

Ответ:

Адрес ИП	Функция (03)	Число байтов	1-е слово данных	•••	N-е слово данных	Контроль ошибок
1 байт	1 байт	1 байт	2 байта		2 байта	2 байта

Запись данных в один регистр (код функции 06)

Запрос:

Адрес И	П Функция (06)	Стартовый адрес	Значение данных СБ	Значение данных МБ	Контроль ошибок
1 байт	1 байт	2 байта	1 байт	1 байт	2 байта

Значение полей сообщений:

Стартовый адрес	Адрес слова, подлежащего записи		
Значение данных	Данные, подлежащие записи		
	(СБ – старший байт, МБ – младший байт)		

Ответ:

Нормальная реакция на требование записи – ретрансляция запроса

Запись данных в несколько регистров (код функции 16)

Запрос:

Адрес ИП	Функция (16)	Стартовый адрес	Число слов	Число байтов
1 байт	1 байт	2 байта	2 байта	2 байта

1-е слово данных	•••	•••	•••	N-е слово данных	Контроль ошибок
2 байта	•••	•••	•••	2 байта	2 байта

Значение полей сообщений:

Стартовый адрес	Адрес слова в таблице, подлежащей записи		
Число слов	Число слов, которые должны быть записаны в таблице		
Число байт	Число байт, которые должны быть записаны в таблице		

Ответ:

Адрес ИП	Функция	Стартовый	Число	Контроль
	(16)	адрес	слов	ошибок
1 байт	1 байт	2 байта	2 байта	2 байта

Аномальные ответы

ИП посылает аномальный ответ, если в принятом сообщении обнаруживаются ошибки. Для индикации того, что данный ответ является уведомлением об ошибке, старший разряд кода функции устанавливается в 1.

Формат аномального ответа:

Адрес ИП	Функция – старший разряд устанавливается в 1	Код ответа	Контроль ошибок
1 байт	1 байт	1 байт	2 байта

Коды аномальных ответов в протоколе MODBUS:

01	Принятый код функции не может быть обработан ИП
02	Адрес данных указанный в запросе не доступен данному ИП
03	Величина содержащаяся в поле данных запроса является не допустимой величи-
	ной для ИП
04	Невосстанавливаемая ошибка имела место пока устройство пыталось выполнить
	затребованное действие

Чтение информации (код функции 03)

Чтение данных измерений

Параметр	Адрес	Размерность	Представление
		(байты)	
Значение 1	0	4	float
Значение 2	4	4	float
	•••		
Значение N	0 + N*4	4	float

где:

N – число измеряемых параметров.

Чтение характеристик измеряемой информации

Структура запрашиваемой информации					
Параметр Размерность Представление					
Масштабный коэффициент	4 байта	float			
Единица измерения	2 байта	unsigned short			
Положение децимальной точки	2 байта	unsigned short			

Параметр	Адрес	Размерность (байты)	Представление
Значение 1	100	8	struct
Значение 2	108	8	struct
Значение N	100 + N*8	8	struct

где:

N – число измеряемых параметров.

Чтение информации о конфигурации ИП

Параметр	Адрес	Размерность	Представление
		(байты)	
Количество измеряемых параметров	1000	2	unsigned short
Сетевой адрес	1002	2	unsigned short
Номер ИП	1008	2	unsigned short
Год выпуска	1010	2	unsigned short
Версия программы	1012	2	unsigned short

Чтение дополнительной информации

Параметр	Адрес	Размерность (байты)	Представление
Значение	1100	64	string

Примечание - ИП контролирует объем запрашиваемой информации, а также попытки чтения информации с адресов, не кратных размерности. При этом генерируется аномальный ответ.

Чтение уточненной информации о причине аномального ответа

Параметр	Адрес	Размерность (байты)	Представление
Значение	2040	2	unsigned short

Коды ошибок:

Код	Описание
0x40	Начало информации не кратно размерности
0x41	Размер запрашиваемой информации превышает допустимую величину
0x42	По запрашиваемому адресу информация отсутствует или закрыта
0x43	Не указан точный размер информации
0x44	Недопустимый сетевой адрес
0x45	Попытка установить недопустимое значение
0x46	На изменяемый параметр установлена аппаратная защита
0x47	Передан неверный пароль

Запись информации (код функции 06)

Параметр	Адрес	Размерность	Ограничение	Представление
		(байты)		
Сетевой адрес	1002	2	1 < VAL < 247	unsigned short
Номер ИП	1008	2	0 < VAL	unsigned short
Год выпуска	1010	2		unsigned short
Скорость	1014	2	$0 \le VAL < 5$	unsigned short
интерфейса				
			0 - 600	
			1 - 1200	
			2 - 2400	
			3 - 4800	
			4 - 9600	
Контроль	1016	2	$0 \le VAL < 3$	unsigned short
четности				
			0 – контроль отключен	
			1 – нечетный (odd)	
			2 – четный (even)	

где:

VAL – величина параметра.

Запись информации (код функции 16)

Запись характеристик измеряемой информации

Структура изменяемой информации

Параметр	Размерность	Ограничение	Представление
Масштабный коэффициент	4 байта	0 < VAL < 9999.0	float
Единица измерения	2 байта	$0 \le VAL \le 20$	unsigned short
Положение децимальной	2 байта	$0 \le VAL < 3$	unsigned short
точки			

Параметр	Адрес	Размерность (байты)	Представление
Значение 1	100	8	struct
Значение 2	108	8	struct
Значение N	100 + N*8	8	struct

где:

N – число измеряемых параметров.

VAL – величина параметра.

Запись дополнительной информации

Параметр	Адрес	Размерность (байты)	Представление
Значение	1100	64	string

2 Протокол обмена данными ИП с ПЭВМ «МНПП «Электроприбор»

Командно-информационный обмен ПЭВМ с ИП осуществляется в пакетном режиме по принципу "команда-ответ". В качестве физической среды передачи информации используется канал интерфейса RS-485 со следующими параметрами:

- скорость передачи 9600 бод;
- режим передачи 8 бит без проверки на четность, 1 стоп-бит, младшие биты вперед;
 - способ представления информации смешанный.

Каждый пакет состоит из нескольких полей, передающихся друг за другом без разрывов во времени.

Перечень полей командных и ответных пакетов (в порядке следования) приведен в таблице В.1.

Таблица В.1

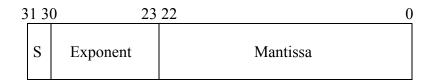
Название поля	Условное	Длина по-	Примечания
	обозначение	ля, байт	
Поле адреса	ADDR	2	-
Поле команды	CMD	1	Двоичный код команды
Поле данных	-	0-64	Может отсутствовать (в зависимо-
			сти от типа и назначения пакета)
Поле контроль-	CRC	2	2-х байтовый циклический избы-
ной суммы			точный код, вычисляемый по всем
			предшествующим байтам данного
			пакета

Признаком конца пакета служит отсутствие передачи на линии в течение 0,025 с после окончания передачи стоп-бита последнего байта.

Пакеты с некорректной контрольной суммой отбрасываются (считаются не поступившими).

Система сетевых команд ИП с разделением на функциональные группы приведена в таблице В.2.

Таблица В.2


Функциональ- ное назначение	16 - ричный код ко- манды	Структура командного пакета	Длина команд- ного пакета, байт	Структура ответного пакета	Длина ответ- ного пакета, байт	
		Группа команд уст	гановки			
Установка нового адреса	CMD = 00h	ADDR-CMD-newADDR -CRC	7	newADDR-CMD- CODE-CRC	6	
Установка характеристик параметра	CMD = 01h	ADDR-CMD-param- scale-unit-dp-CRC	12	ADDR-CMD-CODE- CRC	6	
Установка скорости обмена	CMD = 02h	ADDR-CMD-speed-CRC	6	ADDR-CMD-CODE- CRC	6	
Запись дополнительной информации	CMD = 05h	ADDR-CMD-info-CRC	69	ADDR-CMD-CODE- CRC	6	
	Группа команд чтения					
Чтение текущих показаний	CMD = 40h	ADDR-CMD-param-CRC	6	ADDR-CMD-(nnnn)- CODE - CRC	10	
Чтение характеристик параметра	CMD = 41h	ADDR-CMD-param-CRC	6	ADDR-CMD-scale-unit-dp-CODE-CRC	12	
Чтение идентификационных данных	CMD = 44h	ADDR-CMD-CRC	5	ADDR-CMD-serial-nparam-CRC	9	
Чтение дополнительной информации	CMD = 45h	ADDR-CMD-CRC	5	ADDR-CMD-info-CRC	69	

Условные обозначения, использованные в таблице В.2, приведены в таблице В.3.

Таблица В.3

Сокраще-	Дли-	Способ	Диапазон воз-	Назначение
ние	на, *	представ-	можных значений	
	байт	ления		
ADDR	2	двоичный	0 - 7FFFh	Поле адреса (младший байт вперед)
CMD	1	- '' -	0 - FFh	Поле кода команды
CRC	2	- '' -	0 - FFFFh	Поле контрольной суммы пакета
newADDR	2	- '' -	0 - 7FFFh	Новый адрес
speed	1	- '' -	0 - 4h	Скорость обмена: $0 - 600$, $1 - 1200$,
				2-2400, 3-4800, 4-9600 бод
nnnn	4	- '' -	0 - FFFFFFFFh	Значение текущих показаний:
				1-4-й байт – число формата float
				соответствует уровню выходного
				сигнала
scale	4	- '' -	0 - FFFFFFFFh	Предел шкалы параметра (число
				формата float)
unit	1	- '' -	0 - FFh	Единица измерения: 01 – В, 02 – А,
				$05 - \kappa B, 06 - \kappa A, 09 - MB, 10 - MA$
serial	3	- '' -	0 - FFFFFFh	Серийный номер ИП (ст. байт –
				последние две цифры года выпуска,
				мл. байты – серийный номер ИП)
param	1	- '' -	0 - FFh	Номер запрашиваемого параметра
nparam	1	- '' -	0 - FFh	Число измеряемых параметров
CODE	1	- '' -	0 - FFh	Подтверждение правильности вы-
				полнения команды (код ошибки):
				0 – команда выполнена, другие зна-
				чения – команда не выполнена
info	64	- '' -	-	Содержится текстовая информация
* Длина поля или длина другого параметра, указанного в графе "Назначение".				

Описание 4-х байтного формата float

Значение числа формата float (F) вычисляется по формуле

$$F = (-1)^{S} \cdot 2^{\text{(Exponent-127)}} \cdot 1.Mantissa,$$
 (B.1)

где S – знак числа формата float.

Нулевое значение числа формата float соответствует нулям во всех четырех байтах.

Приложение Г

(справочное)

Порядок работы с программой «Control_RS-485»

Подключить ИП к ПЭВМ в соответствии с рисунком Г.1.

Р – преобразователь интерфейса RS-485 в RS-232 или USB; ПЭВМ – персональная ЭВМ IBM-совместимая; Остальное – см. рисунки Б.1-Б.6.

Рисунок Г.1

Подать питание на ИП.

Установить в ПЭВМ служебную программу «Control_RS-485». Указанная программа размещена на сайте предприятия www.electropribor.com в разделе «Служебные программы», а также по запросу может быть выслана потребителю на его адрес электронной почты.

Запустить служебную программу «Control_RS-485» (см. рисунок Г.2).

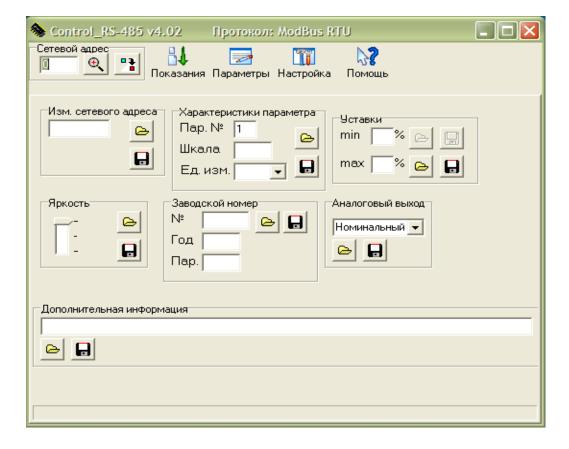


Рисунок Г. 2

При первом запуске необходимо настроить порт ПЭВМ для связи с ИП, скорость обмена и тип протокола. Для этого нужно перейти в меню программы «Настройка» и в появившемся окне (см. рисунок Г.3) выбрать номер порта, к которому подключено ИП, скорость обмена и тип протокола, нажать кнопку «ОК», затем закрыть это окно.

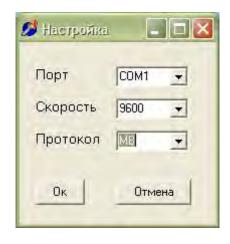


Рисунок Г.3

Программа определит сетевой адрес и тип протокола прибора (см. рисунок.Г.4).

Рисунок Г.4

Для изменения сетевого адреса в окне «Изм. сетевого адреса» необходимо задать новое значение адреса, записать указанные данные кнопкой « », а затем для проверки прочитать кнопкой « », данные должны совпадать.

Для изменения типа протокола нажать кнопку « », затем кнопку « мв вти » или « морвиз » (МВ RTU – протокол обмена данными «МОрвиз (RTU)», EP – протокол обмена данными «МНПП «Электроприбор»). Нажать кнопку « ».

Для чтения показаний измеренных ИП величин перейти в меню «Показания» (см. рисунок Γ .5).

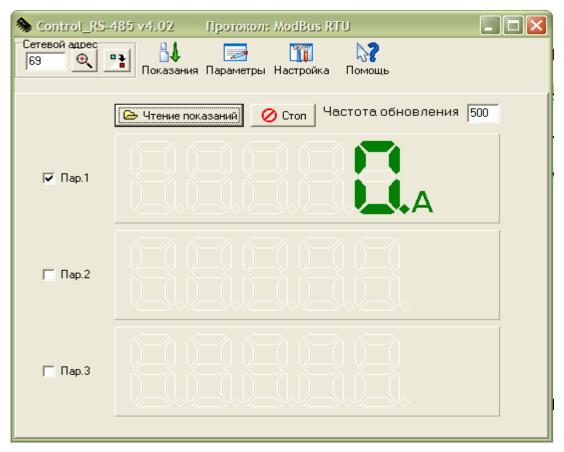


Рисунок Г.5

Установить флажок напротив «Пар.1».

Нажать кнопку « — Чтение показаний ».

На экране должны отобразиться измеряемые параметры с единицами измерений.

Для остановки опроса нажать кнопку « Остоп ».